On the Optimal Order of Reading
Source Code Changes for Review

Tobias Baum and Kurt Schneider
FG Software Engineering
Leibniz Universitdt Hannover
Hannover, Germany
Email: [firstname.lastname] @inf.uni-hannover.de

Abstract—Change-based code review, e.g., in the form of pull
requests, is the dominant style of code review in practice. An
important option to improve review’s efficiency is cognitive
support for the reviewer. Nevertheless, review tools present the
change parts under review sorted in alphabetical order of file
path, thus leaving the effort of understanding the construction,
connections, and logic of the changes on the reviewer. This leads
to the question: How should a code review tool order the parts
of a code change to best support the reviewer? We answer
this question with a middle-range theory, which we generated
inductively in a mixed methods study, based on interviews, an
online survey, and existing findings from related areas. Our
results indicate that an optimal order is mainly an optimal
grouping of the change parts by relatedness. We present our
findings as a collection of principles and formalize them as a
partial order relation among review orders.

I. INTRODUCTION

Code Review, particularly in the form of Inspection [1],
has been shown to be an effective software quality assurance
technique for decades. In recent years, its use in industry is
converging towards ‘change-based code review’ [2],! a variant
of code review embedded into the software development
process such that the changes performed in some development
task define the review scope. Change-based code review has
gained a vast popularity [5], especially in the form of pull-
based software development [6] as provided by GitHub [7],
therefore ways to improve the effectiveness and efficiency of
change-based code review can lead to a significant impact.

As change-based code review is usually supported by com-
puterized tools, better computerized cognitive support for the
reviewer is a promising avenue to gain such improvements [8].
One possibility for better cognitive support lies in presenting
the code changes to be reviewed in a better way: Current re-
view tools usually list the change parts alphabetically ordered
by file path. Barnett et al. [9] and Baum and Schneider [8]
indicate that this order could be sub-optimal in many cases,
especially for larger changes; we present further evidence for
this claim in Section III. The natural follow-up question is:
How should the parts of a code change be ordered to best
support the reviewer during change-based code review?

In this paper, we present a work aimed at answering this
question. We follow a theory-generating methodology [10] and

lalso ‘modern code review’ [3] or ‘continuous differential code review’ [4].

Alberto Bacchelli
ZEST — Zurich Empirical Software engineering Team
University of Zurich
Ziirich, Switzerland
Email: bacchelli@ifi.uzh.ch

combine input from multiple data sources: (1) Log data from
292 tool-based review sessions in industry; (2) task-guided
interviews with 12 professional developers; (3) related work
from fields such as cognitive science and program comprehen-
sion; and (4) a task-based survey answered by 201 reviewers.
We present our findings as a collection of ‘principles’ given
in natural language and we formalize them into a theory? to
improve their verifiability and utility for follow-up studies.
With our work we contribute the following:
o Further empirical support that improving the order of
presenting code changes for review is worthwhile
« Empirically grounded principles that describe which or-
der of presenting code changes helps to achieve better
review efficiency
o A theory derived by formalizing these principles

II. METHODOLOGY
A. Research Questions

Although we used an iterative methodology, we present our
results structured linearly along 4 research questions.

Reviewers can navigate the code in two ways: On their own,
driven by hypotheses they form along the way, or guided by
the order presented by the tool. There is qualitative evidence
that both occur in practice and that the current tool order
is sub-optimal [8], [9]. To add further qualitative as well as
quantitative support to this claim, we set to answer:

RQ1. How relevant to reviewers is the order of code
changes offered by the code review tool? (Section III)

Given that the current order is perceived as sub-optimal, we
then focus on empirically defining what makes a better order:

RQ2. Are there principles for an optimal order of reading
code changes under review? (Section V)

Those principles, if any, would provide a human-readable
impression of what is meant when talking about presenting the

2Writing about “generating theory” in this paper, we use the word theory in
the sense of Sjgberg et al. [10]: An empirically-based description of constructs
and propositions that can be used to derive testable predictions. As a “middle-
range theory” it involves abstraction but is still closely linked to observations.

changes in a better order. To be implemented in software or
used for predictions, they need to be specified more precisely:

RQ3. How can the notion of ‘better order for code review’
be formalized as a theory? (Section V)

Finally, even though no previous study on the optimal
order of reading changes for change-based code review has
been conducted, our investigation shares similarities with other
studies (e.g., by looking at the influence of structure on
understanding or by proposing techniques to make reading
code in code reviews more efficient). We consider these studies
not only for informing our theory, but also to triangulate it:

RQ4. How does the theory fit within the related work and
existing evidence? (Section VI)

B. Research Method

Our approach was inspired by methods to iteratively gene-
rate theory from data, most notably Grounded Theory [11],
[12]3 We started with interviews as a flexible means to
gather rich data and triangulated our findings with empirical
results from related fields as well as with an online survey.
Furthermore, we collected log data from code reviews in
industry to support the claim that better automatic ordering
of changes can help to improve review. We detail the data
sources and their connection to the answers, as in Figure 1.

Logged review navigation (Point I in Figure 1): Past studies
provided qualitative evidence that the current standard order
of review tools, i.e., alphabetical by path, is not optimal [9],
[8]. To triangulate these findings and to gain more quantitative
information, we analyzed data from a medium-sized software
company that develops a software product with about 20
developers. To gain insights into the navigation patterns, we
instrumented a code review tool to log detailed interaction data
during reviews (software telemetry [13]). The data used in
the current study consists of 292 reviews collected during fall
2016. To determine the size of code changes, we analyzed the
company’s versioning system. The data set is available [14].

Task-guided Interviews (Point IT): The main method of data
collection in the early phases of the study was a special form of
task-guided interview. We prepared exemplary code changes
from real world projects and printed each part of the changes
in form of a two-pane diff on a different piece of paper.
Interviewees were asked to sort the shuffled parts for a change
into the order believed to be best for review. A short printed
description of the participant’s task and the purpose of the
change was also handed out. While sorting, the participant
was asked to think aloud. When the participant had finished,
the interviewer explicitly asked for a rationale for the given
order. After that, the interviewer presented an alternative order

3We do not regard our study as a Grounded Theory study in the narrow
sense but rather as a mixed methods study, among other things because our
research question was largely fixed before starting the data collection.

change

@

—

change q
Instrumented code-review tool

292 recorded sessions

U

Relevance of Ordering
by Code Review Tools

|H I
~

Task-guided survey
201 valid respondents

Ol

change change

change change
a

Task-guided interviews
12 participants

- F
HRE

Empirically Grounded
Ordering Principles

SE
Literature

Other
Literature

Theory for Ordering
Change Parts

Analysis of existing findings
from related areas

Data sources Results

Fig. 1. High-level view of the research method

(either taken from an earlier interview or prepared by the
researchers before the session) and the participant was asked
to explain why his/her order was better than this alternative. In
most interviews, we repeated this comparison with yet another
order, in other interviews we repeated the whole procedure
with a different code change.

We used three different change sets (A, B, and C) sampled
from real-world software systems. Our main criteria for se-
lecting the changes were their size/complexity (manageable,
yet not trivial) and their content (based on our preliminary
hypotheses). Changes consist of 7 to 10 change parts, mainly
in Java files, but also in XML and XML Schema files. In the
interviews, the participants were familiar with the codebase
for changes B and C, but not for A. Details on the changes
are in the study’s material [14].

All of the sampled interview participants had good pro-
gramming knowledge, but not all of them were experienced
reviewers. Table I presents the participant’s demographics.
Seven of the interviews were performed by the first author
of this paper and five by the last. In the first four interviews,
the researcher took interview notes; all of the other interviews
were recorded and later transcribed.

The interviews resulted in two types of data: the orders de-
clared optimal by the participants and the interview transcripts.
The interview transcripts were analyzed by open coding aug-
mented by memoing. The codes were then refined and checked
in a peer card sort session [15], [16] performed jointly by the

TABLE I
INTERVIEW PARTICIPANTS: ID, EXPERIENCE, AND CHANGE SET
Dev. exp. | Change Dev. exp. | Change
ID] ID 5
(in years) | set (in years) | set
11 2 | A 17 23 | B+C
12 8 | A 18 3] A
13 31 A 19 10 | A
14 3 A 110 5| A
15 7 A 111 10 | A
16 5 | B+C 112 10 | A

first and third author (Point 5), followed by further selective
coding. The sequences given by the participants were included
in the card sorting and also analyzed programmatically to
systematically search for nonrandom patterns. We furthermore
used them later to check the formalization of the theory. Du-
ring the whole research process, we used memoing to capture
ideas and preliminary hypotheses. The study material (i.e.,
the interview guide and transcripts, the change parts, and an
Atlas.TT project with the codes and memos) is available [14].

Existing Findings in Related Areas (Point III): One of the
guidelines in Grounded Theory is that “other works simply
become part of the data and memos to be further compared to
the emerging theory” [12]. With this mindset, we used existing
findings from related areas to inform and triangulate our
theory. The selection of related fields was guided by theoretical
sampling, e.g., by looking for works on hypertext after the
importance of relations began to emerge. When sampling from
a research field, we tried to get a good overview, but we did
not perform systematic literature reviews in the narrow sense.

Task-based Survey (Point I'V): After formulating preliminary
hypotheses, we conducted an online survey. It contained task-
guided confirmatory questions to challenge the preliminary
hypotheses and exploratory questions to develop the theory
further. We defined the target population as ‘software de-
velopers with experience in change-based code review’ and
included a set of questions to filter respondents accordingly.
We used established guidelines for survey research [17] to
formulate the questions and structuring the survey. The main
part consisted of tasks asking respondents to declare their
opinion regarding different code orders for review. In addition,
besides the filter questions, the survey contained 3 questions on
the participant’s navigation behavior during code review (for
RQ1) and 4 questions to analyze potential confounding factors,
such as the used review tool and programming language. All
the questions were optional, except for the filter questions.
The main, task-guided part consisted of four pages; Figure 2
shows an extract of one. Every page started with the abstract
description of a code change (Point 1 in Figure 2) and ended
with a free text question for further remarks (Point 2). Between
that, a selection of three types of questions was included,
which asked for: the participant’s preferred order of the change
parts (Point 3), a comparison of two orders pre-selected based
on the research hypotheses (Point 4), and an assessment of
the usefulness of a set of orders on a 4-point Likert scale (not
shown in Figure 2). The order in which the change parts and

Imagine you have to understand and review a code change. This time the code (1)
change consists of three changed methods:

blue (method): A change in a method that uses data from green()

green (method): A change in @ method that provides data for blue()

purple (method): A change in the same package as green(), without further connection to
the other changes

a You can assume that all methods are equally important for review.

Please sort these changes so that the part that you would like to review first is on 3
the top and the part you would like to review last is on the bottom in the right

list. Double-click or drag-and-drop items in the left list to move them to the right.

Your choices Your ranking
green

purple

blue

The ing opti show two p orders to review the code changes
described above. Which of these orders would you prefer?

green; blue; purple
blue; green; purple
I definitely do not see a difference between these two

@ No answer

Further remarks on these questions (in case you have any, e.g. when you had to 2
make additional assumptions)

Fig. 2. Example main page from the survey (data-flow variant/Situation 2a)

proposed orders were presented was randomized.

We used eight pre-tests with software developers to iterati-
vely optimize the survey. The creation and testing of the survey
took seven weeks; the final survey ran for five weeks.

To invite software developers to our survey, we randomly
sampled active GitHub users and invited developers from
our professional networks. We invited a total of 3,020 de-
velopers. The initial filter questions were answered by 238
people (response rate: 8%), of which 201 were part of the
target population. Not all participants completed the survey or
answered all questions. We excluded participants if values for
the respective hypothesis/research question were missing or if
an answer was inconsistent with one of their earlier answers.
Therefore, the total number of answers differs for the analyses.

Of the respondents, 97% program and 85% review at least
weekly, so we did not take further measures to account for
varying practice of the participants. 57% of the respondents
have only one or two years of experience with regular code
reviews; we included these participants unless otherwise no-
ted, but only after statistically showing their answers to be
distributed like those of the respondents with 3 years or more
of experience. The influence of sampling through GitHub is
clearly visible: A majority (102 of 177) uses GitHub pull
requests for reviewing and JavaScript (66 of 133) or Java (41
of 133) as a programming language. 89% (117 of 132) develop
software commercially and 72% (95 of 132) participate in
open source. The survey and the data sets are available [14].

C. Limitations

We describe limitations of our study, for both the whole
study and the different methods of data collection.

If our study was a theory-testing study, it would be severely
limited by two assumptions underlying our argumentation: (1)
For the interviews and survey: What is a good tour and what
experienced developers think is a good tour coincides to a
large degree. (2) For our usage of related work: Findings
from natural language reading and program comprehension
can be transferred to code change comprehension. As our
goal is efficient generation of theory instead, we deem these
assumptions to be acceptable. One of the most important tasks
in future work is to make the reliance on these assumptions
unnecessary by directly testing the theory.

The main limitation of the collected log and repository data
is that it comes only from a single company and code review
tool. Since the general tendency we found in this data was
also supported in the survey, we deem this as a limitation to
the generalizability of the exact numbers only.

One of the greatest risks in the interviews and the survey
was to accidentally introduce a bias for a certain order. We
took several measures to counter this risk: In the interviews,
we shuffled all change parts and used random words instead of
numbers as IDs for the distinct parts. We did not remove line
numbers as they could be part of a sensible ordering strategy.
For the survey, we used randomized orders in the questions
and in the descriptions, and we used colors as part IDs. Color
names instead of random words were found to be easier to
understand in the pre-tests.

To avoid the anchoring effect [18] in both the interviews and
surveys, we first asked for the participant’s preferred order
before presenting other orders. By describing the steps of
the interview in an interview guide and by videotaping some
sessions, we increased intersubjectivity. Mitigating researcher
bias was one of the reasons to perform a joint card sort.

During survey creation, we checked against published gui-
delines [17] and performed several rounds of pre-testing.
Nevertheless two factors probably introduced some noise into
the data: (1) Understanding the abstract situations was still
a problem for some participants (some respondents indicated
that they left the respective questions empty, but others might
have answered without having understood the described situ-
ation); (2) the drag and drop support in the ranking widget
(used for the questions of type Point 3 in Figure 2) had to be
used with a certain care to avoid unintended results.

A negative side-effect of our sampling method is that the
sample should be regarded as self-selected; we included a
number of questions into the survey to characterize the sample
and check for influencing factors and analyzed the answers.

The generalizability of our results to the population of users
of change-based review is probably quite high, mainly due to
the large number of participants in the survey. The sample of
distinct code changes we used is much smaller, which could
impede generalizability in this regard. Specifically, the set of
relations given in Section IV may be incomplete.

ITII. THE RELEVANCE OF THE ORDER BY THE TOOL

Our first research question seeks to understand the relevance
of the ordering of changes proposed by the code review tools.
To answer this question, we gathered opinions in interviews,
log data from tool-based reviews in industry, and estimates
from our survey’s respondents.

The log data contains traces of files visited in a review
session. By comparing these files to the alphabetical order, we
identify whether the user followed the (alphabetical) order of
the review tool and types of deviations. In 156 of 292 studied
review sessions (53%), the user started with the file presented
first by the review tool. When reviewing further, 3,071 of 8,254
between-file navigations (37%) took the reviewer to the next
file in the tool order; moreover, in 162 (55%) of the review
sessions, the reviewer visited additional files that were not part
of the change set. We interpret that the hyperlinking and search
features of the IDE help the reviewer navigating, after a place
to start is found.

For small changes, the presentation order may have a negli-
gible effect, as the number of permutations and the cognitive
load for the reviewer grows with change size. In a study at
Microsoft, Barnett et al. [9] found a median size of 5 files and
24 diff regions in changes submitted for review. The review
sessions we analyzed are even larger, with a median size of
11.5 files per task. About 54% of the reviews had a scope of
10 or more files. We could not find a statistically significant
pattern connecting review size and navigation behavior.

In our interviews, we asked the participants’ opinion on
an alphabetical order for review. They were either neutral
or negative about it, e.g., “Well, I don’t think file based is
a good order [...] or alphabetical order is definitely not a
good order.” g “I mean it’s clear that GitHub doesn’t have any
intelligence behind the way that it presents you the reviews,
currently, so even a small improvement is welcome.” 119 And
although we did not ask the participants of our survey for
it, some left a remark at the end of the survey, for example:
“I’ve never thought about ordering of changes in code review
tools. But while filling this survey I started thinking that proper
ordering could make reviewing of code much simpler.” go7¢

When a code review is performed jointly with the author
of the code, the author can guide the reviewer through the
code. Therefore, we asked about joint reviews in our survey.
Of 167 participants answering this question, 32 (19%) perform
reviews ‘often or always’ together with the code’s author. We
asked the remaining participants about their behavior in two
situations: (1) When starting the review and (2) when in the
midst of the review. 132 respondents answered these questions
and a large fraction reported to use the tool’s order ‘often or
always’: 97 (73%) for the start and 87 (66%) for the middle
of the review; Figure 3 reports the details. We found that
there is a tendency for more experienced reviewers and for
reviewers with IDE-integrated review tools to use the tool’s
order less often,* but the general picture stays the same for all

4Always continuing in tool order: experienced: 6/62, inexperienced: 18/70;
IDE-based: 1/24, web-based: 23/106

How often do you start a review with the change presented first by the tool?
[6]4 25] 54 |48 |

jcount | | | | | |
I | | | } | |

50 25 0 25 50 75 100

How often do you continue with the change presented next by the tool?
7o] 29] 63 | 24 |

jcount | | | | | |
| | | | | | |

50 25 0 25 50 75 100
D Never D Rarely D Sometimes D Often I:I Always

Fig. 3. Survey results: Relevance of the ordering offered by the tool

sub-populations we studied.

Summing up, in a significant number of change-based code
reviews, the reviewers use the order in which the code changes
are presented by the review tool to step through the code,
although they report to regard this order as sub-optimal for
efficient understanding and checking of the code. The size of
a code change under review is often small, but in a notable
number of cases not small enough to make the effect of
the order irrelevant. The problem is more pronounced for
less knowledgeable reviewers. A code review tool should,
therefore, present the changes in an order that is well-suited for
a human reviewer. The results of our next research questions
describe how such an order should look like.

IV. PRINCIPLES FOR AN OPTIMAL ORDERING

Our second research question seeks to extract general prin-
ciples to guide the ordering of changes to support code review.

A. General Principles

The interview participants believe that certain orders are
better suited for code review than others. But the choice of
the optimum is subjective. However, participants generally
acknowledged that other orders are good, too, and believe
that a number of orders will be similar in terms of review
effectiveness and efficiency: “I don’t necessarily think this is
worse. It’s more a different point of view.”y4 “[This order]
probably makes sense if you’re super-deep into the system.” r1¢

Following the ‘tour/path’ metaphor used in other publicati-
ons [19], [20], we use the term ‘tour’ in the following to denote
a permutation of the change parts under review. Our ‘change
parts” and change hunks from the version control system are
related, but do not have to be identical, as will be further
detailed in Section V.

Based on the combination of the different data sources,
it emerges that an order that obeys the principles described
in the following is perceived to lead to better review
effectiveness and efficiency compared to other orders.

TABLE 11
SURVEY RESULTS: CONFIRMATORY QUESTIONS FOR PRINCIPLE 1.
Preference Sit. 2a + 2b! Sit. 2a Sit. 2b Sit. 4?
(Only (Only attr.
data-flow) decl.-use)
close 102 67 35 102
not close 14 4 10 6
no preference 7 4 3
Total resp. 123 75 48 108

1 Only one of Situation 2a (data-flow relation) and Situation 2b (declaration-
use relation) was shown selected by chance.

2 Results for Situation 4 deduced from the user-given order (Point 3 in
Figure 2), therefore “no preference” does not occur.

TABLE III
SURVEY RESULTS: COMPARISON OF DIFFERENT WAYS TO ORDER CHANGE
PARTS RELATED BY CALL-FLOW (ONE CALLEE, FOUR CALLERS), USED
FOR PRINCIPLE 2 AND 6.

Order strategy Count among Count among Mode (prevalent

best rated worst rated answer)
bottom-up 111 16 very useful
(100 times)
top-down 35 61 somewhat useful
breadth-first (49 times)
top-down 34 67 somewhat useful
depth-first (56 times)
no sensible rule 10 112 not very useful
(55 times)'
Total resp. 130 130 130

! For experienced reviewers, the mode is “not at all useful” (21 of 45).

seems a bit like a code clone. [...] And this is actually why
I think it is really cool to have these two [related change
parts] together.” 1o “If I was to return on this one, I would
have to switch the context, which is bad.” ;s “I think a review
tool should try to group changes that ’logically’ belong
together.” g44 “Unrelated things should not get in the way of
related things.” s29¢ As shown in Table II, Principle 1 is also
well supported in the survey results.

Principle 2: Provide information before it is needed.

This allows the reviewer to better understand the change
parts: “Without the knowledge if this attribute is required or
optional, I can’t tell if the mapper is correctly implemented.” 7
“Blue depends on green, so it’s useful to know what green is
before reviewing blue.” go45

Although we did not include a confirmatory question for
Principle 2 in the survey, we interpret one of the results as
attributable to it: The respondents showed a clear tendency
towards going bottom-up along the call-flow relation, with
111 of 130 (85%) rating bottom-up as preferred (see Table III).

Principle 1: Group related change parts as closely as
possible.

Principle 3: In case of conflicts between Principles
1 and 2, prefer Principle 1 (grouping).

By grouping related change parts together, we avoid context
switches and reduce the cognitive load for the reviewer.
Additionally, we ease the task of comparing neighboring
change parts to spot inconsistencies or duplications: “So here,

When reviewers come across a change part where they
need knowledge they do not yet have, they need to make
assumptions (at least implicitly). As long as the related
information-providing change parts are coming shortly

TABLE IV
SURVEY RESULTS: CONFIRMATORY QUESTIONS FOR PRINCIPLE 3.

Preference Sit. 2a + 2b! Sit. 2a (Only Sit. 2b (Only

data-flow) attr. decl.-use)
prefer closeness 82 57 25
prefer direction 26 12 14
no preference 11 5 6
Total resp. 119 74 45

1 Only one of Situation 2a (data-flow relation) and Situation 2b (declaration-
use relation) was shown selected by chance.

afterward, they can then check the assumptions against
reality: “The order doesn’t actually influence me that
much.” 11 “Maybe the order was not what I preferred, but
the groupings of the snippets made sense.” 15 “The only thing
that matters here is that purple and gold appear one after
the other, whichever first.” g39o Principle 3 is supported in the
survey, although less than Principle 1: 76% of the respondents
who indicated a preference preferred closeness (see Table IV).

Principle 4: Closely related change parts form chunks
treated as elementary for further grouping and ordering.

Principle 4 was needed to explain some of the interview
results and is supported in the literature on cognitive processes,
but it did not emerge explicitly from the interviewees’
statements. Therefore, we included two exploratory questions
in the survey to investigate it (Situation 3). The tour using
chunking to let the relations point in the preferred direction
was chosen as better by 35 of 50 respondents (70%) in one
and 38 (76%) in the other question.

Principle 5: The closest distance between two change
parts is “visible on the screen at the same time.”

Seeing two closely related change parts directly after another
is good, but seeing them both at the same time is better: With
the latter, the cognitive load is minimal and inconsistencies
can be spotted. As our participants put it: “The most useful
presentation would be to display all [5 related] changes at
once and to allow the user to navigate freely” s4q “I'd prefer
to have them both |[...] on screen, ideally.” s54 “I’d make [the
description] stay on top, wherever I look at.” rg

Principle 6: To satisfy the other principles, use rules that
the reviewer can understand. Support this by making the
grouping explicit to the reviewer.

An order that the reviewer does not understand can “break
his line of thought” and lead to disorientation. Making the
grouping explicit helps the reviewers to understand it, to
form expectations and to divide it into parts they can handle
separately. “We’re going back from something that is more
specific to something that is generic. And that kind of breaks
my line of thought.”’ 110 “[This order] doesn’t have a specific
pattern, at least none that I can immediately identify. [...] This

is bad’rs “If the parts had been grouped, the groups made
visible and ideally given sensible names, I would have been
able to understand the ordering better.” 15

When asking the survey participants to rate bottom-up vs
top-down tours, we also included a tour that was not based on
a “sensible” rule. This option was rated among the worst by
112 of 130 respondents (86%), thus supporting Principle 6.

The common guideline to ‘keep commits self-contained’ is
a special case of Principle 1 combined with Principle 6. In this
case, a commit is an explicit group of related change parts.

The importance of a change part for code review varies,
e.g., some change parts are more defect-prone than others.
The participants took this importance into account to varying
degrees. Some used it as an important ordering criterion,
while others did not. A lot of the variation in participant’s
orders from the interviews is due to these differences in the
assessment and handling of unimportance.

B. The Macro Structure: How to Start and How to End

At the very beginning of the review, the reviewer should learn
about the requirements that led to the change. Many also
wanted to get some kind of overview at the start (“First in-
troduction to understand the context, then the crucial part”s).
An example of usage, e.g., a test case, can help to achieve
this.

We could observe several tactics (T) among our interviewees
on how to proceed after that, i.e., start with: (T1) something
easy, (T2) a natural entry point, e.g. GUI, Servlet or CLI,
(T3) the most important change parts, (T4) new things,
(TS) change parts that “don’t fit in”, if any. Of these tactics, T1
and T2 often suit Principle 2 better, i.e., to provide information
before it is needed. In contrast, T3, T4 and T5 are heuristics
to visit more important/defect-prone change parts early.

Some participants gave tactics for the end of the review,
too: (1) End with a wrap-up/overview (e.g. a test case or some
other example of usage putting it all together), or (2) put the
unimportant rest at the end.

C. The Micro Structure: Relations between Change Parts

Principle 1 states that related change parts should be close
together. The participants gave a number of different types
of “relatedness”, e.g.: (1) Data flow, (2) call flow, (3) class
hierarchy, (4) declare & use, (5) file order, (6) similarity,
(7) logical dependencies, and (8) development flow. A more
detailed description of the relation types can be found in the
supplemental material [14].

Most of these relations are inherently directed (e.g. class
hierarchy or data flow), while others are undirected (e.g.
similarity). For many of the directed relations, we observed
a preferred direction (e.g. to put the declaration of an attribute
before its use); for others—mainly for call flow—the prefer-
red direction seems to be more subjective. Many interview
participants preferred to go top-down from caller to callee,
but others also talked about going bottom-up from callee to
caller. In contrast, the survey results support bottom-up (see

Construct
Code change

Review efficiency
Review effectiveness
Defect

Change part

Tour
Relation
(between change parts)

Grouping pattern

Table III). We interpret that a simple global rule of “always
prefer bottom-up/top-down” probably does not exist.

Another distinction between the relations is whether they are

TABLE V
DEFINITIONS OF THE CONSTRUCTS

Description

The “code change” consists of all changes to source files performed in the “unit of work” [2] under review. This also includes
auxiliary sources like test code, configuration files, etc. The code change defines the scope of the review, i.e., the parts of the
code base that shall be reviewed. With task or user story level reviews, a code change can consist of multiple “commits”.
Review efficiency is the number of defects found per review hour invested (definition adapted from [21]).

Review effectiveness is the ratio of defects found to all defects in the code change (definition adapted from [21]).

In the context of this study, a defect is any kind of true positive issue that can be remarked in a review. This encompasses
faults as defined in the IEEE Systems and Software Engineering Vocabulary [22], but also for example maintenance issues. This
definition is sufficient as we are primarily interested in relative differences in the number of defects.

The elements of a code change are called “change parts”. In its simplest form, a change part corresponds directly to a change
hunk as given by the Unix diff tool or the version control system. When some part of the source code was changed several
times in a code change, a change part can span more than two versions of a file. It could be beneficial to split large change
hunks into several change parts, e.g., when the hunk spans several methods.

A tour is a sequence (permutation) of all change parts of a code change.

There can be “relations” between change parts. A relation consists of a type (e.g. call flow, inheritance, similarity; see
Section IV-C) and an ID that allows distinguishing several relations of the same type (e.g. the name of the called method).
There are relations of differing strength, but we do not take this into account in the current formal model. Change parts (as
vertices) and relations (as edges) define a graph with labeled edges, the “part graph”. There are directed as well as undirected
relations. We model undirected relations as two directed edges so that the graph is directed. There can be multiple edges between
two change parts, but their labels have to be distinct. We further demand that the graph has no loops. A mechanism similar to
the one used by Barnett et al. [9] can probably be used to get from the syntactic level to the relation graph.

The grouping and ordering preferences of a reviewer are modeled as “grouping patterns”. A grouping pattern combines a
matching rule that identifies a subset of change parts in the part graph and a function rate to provide a rating for a permutation
of the matched change parts. We found only one family of grouping patterns to be sufficient to describe our data so far: A “star
pattern” (see Figure 4) matches a core vertex and all vertices (at least one) that are connected by an edge with a given relation
type and the same ID to the core. In the “bottom-up” case, the rating function assigns a high rating (e.g. 1) to all sequences
that start with the core and a low rating (e.g. 0) to all others.

call, bazg)‘Vr

;similarity,x

binary or gradual. For a binary relation, like call flow, there
are only two possibilities: Either there is a relation or there
is none. For a gradual relation, like similarity, the distinction
between related and unrelated is fuzzier.

V. A THEORY FOR ORDERING CHANGES FOR REVIEW

The principles and findings described in the previous secti-
ons detail what makes a good order of changes for code review,
but to implement them in software or to test the hypotheses,
they are still too vague. Therefore, we formalize them based
on the guidelines for building theories in software engineering
by Sjgberg et al. [10], i.e., by giving our theory’s scope,
constructs, propositions, and the underlying explanations.

A. Scope and Constructs

The scope of our theory is change-based code review [2].
The theory has been developed based on code written in
object-oriented languages; it possibly has to be adapted to be
applicable to other programming paradigms.

The constructs of our theory are detailed in Table V.

B. Propositions

The goal of this section is to define a partial order > C
Tour x Tour (in words: is better than) between tours that

call,foo()

call,foo()

call,foo() call,foo()

call,bar()

Fig. 4. Example of a Star Pattern (Thick Edges) in a Change Part Graph

captures our notion of the utility of an order for review. For
every pair of tours ¢; and ¢, it holds (other things being equal):

th,tg 1ty >ty =
(reviewEfficiency(¢1) > reviewEfficiency (t2) A

reviewEffectiveness(t;) > reviewEffectiveness(tz))

The proposition above states that a tour that is better
than another in terms of > will not be worse in terms of
review efficiency or effectiveness. We also expect a stronger
proposition to hold, namely that there are tours where a better
ranking in terms of > means better review efficiency:

ity ity 2rta A= (te 27 t1) =
reviewEfficiency(t1) > reviewEfficiency(¢2)

The definition of >p is parametric; based on a set P of
grouping patterns. Different preferences of reviewers can be
captured by changing this set P. It also depends on the part
graph g, which we assume to be implicitly known. By using a

partial order, we allow for two tours to be incomparable, which
we exploit when there is yet no sufficient empirical evidence
to base the comparison upon.

The relation > is defined based on a helper construct, the
‘match set” (MS) of a tour. The MS consists of all occurrences
of a grouping pattern in a tour. A grouping pattern match
occurs in a tour when all vertices matched for the pattern in
the part graph are direct neighbors in the tour. Structurally, a
pattern match is a pair (p,v) of a grouping pattern p and the
set of matched change parts v.

A tour is better than another when its MS is better, i.e., when
it has more matches or the same matches with higher ratings,
as given by the grouping pattern’s rating function (rate):

t1 >1 ta <= mS(t1,9) >nms mS(ta, g)
< mS(t1,9) D mS(ta,g) V
(mS(t1,9) = mS(t2,9) A
VYm € mS(t1,g) : rate(m, t1) > rate(m, t3))

The inclusion of all pattern matches from the sequence of
change parts in a tour into the match set mainly formalizes
Principles 1 (group related parts) and 3 (prefer grouping).
To also formalize Principle 4 (chunking), we introduce the
notion of shrinking a tour (and the corresponding part graph)
by combining change parts: The function shrink : Tour x
PartGraph x p(ChangePart) — Tour x PartGraph
creates a new tour by removing all change parts contained
in the set given as the third parameter and replaces them with
a composite part. On the part graph, it also combines all given
change parts into the composite part. Edges that pointed to one
of the removed parts now point to the composite part. If this
leads to duplicate edges or loops, they are combined/removed.

We conclude defining the recursive function m.sS : Tour X
PartGraph — MS (pM stands for patternMatches, i.e.,
the matches for a pattern in a tour given a graph):

mS(t, g) ==
U pM(p,t,g) U U mS(shrink(¢, g, m.v))
peEP mepM(p,t,g)

Table VI shows how the formalization reflects the principles
and other empirical findings presented in Section IV.

C. Explanation

To end the presentation of the theory, we will now summa-
rize and extend its rationale: It is based on the assumption
that the efficiency and effectiveness of code review (with
a fixed number of reviewers) is largely determined by the
cognitive processes of the reviewers. The reviewer and the
review tool can be regarded as a joint cognitive system [23],
and the efficiency of this system can be improved by off-
loading cognitive processes from the reviewer to the tool. The
relevant cognitive processes can be divided into two parts:
Understanding the code change, and checking for defects.
The way in which the changes are presented to the reviewer
influences both. A good order helps understanding by reducing

the reviewer’s cognitive load and by an improved alignment
with human cognitive processes (hierarchical chunking and
relating). It helps checking for defects by avoiding speculative
assumptions and by easing the spotting of inconsistencies.

VI. THE THEORY IN THE CONTEXT OF RELATED WORK

We contextualize our theory within the related work in
software engineering and comprehension research.

A. Reading Comprehension for Natural Language Texts

Brain regions responsible for language processing are also
active during code comprehension [24]. There are differences
in the activation patterns between code and text, but these
become less pronounced with programming experience [25].
Therefore, we used several studies from the large body of
research on reading comprehension and the understandability
of natural language texts to inform our theory.

The “Karlsruhe comprehensibility concept” [26], an exten-
sion of the “Hamburg comprehensibility concept” [27], sum-
marizes multiple studies on factors influencing the comprehen-
sibility of natural language texts. It names six influencing fac-
tors/dimensions: Structure, concision, simplicity, motivation,
correctness and perceptibility. Our approach to improving code
ordering mainly targets the “structure” dimension.

The positive impact of a sensible, explicitly recognizable or
presented text structure is also reported in other studies (e.g.
[28], [29] and [30]). A good text structure is “coherent”, i.e.,
parts of the texts hang together in a meaningful and organized
manner [30]. Reading scrambled paragraphs takes more time,
and is detrimental to recall quality when there is a time limit
[31]. Presenting news and corresponding explanations in a
clustered way can improve the understanding and interest of
a reader [32]. And there is evidence that stories are mentally
organized in a hierarchical fashion [33].

The aforementioned results fit to ours, but there is also some
evidence to the contrary: McNamara et al. found that a less
coherent structure can improve the learning of knowledgeable
readers from a text, presumably because they have to think
more actively [34]. The same could be true in our case,
with a sub-optimal structure forcing the reviewer into a more
active role. This underlines the need to empirically test our
predictions in future work.

B. Hypertext: Comprehension and Tours

Our theory is based on the assumption that the relations be-
tween change parts are an important factor in determining the
optimal tour. The resulting part graph shares many similarities
to a hypertext. Hypertext research has studied how different
link structures and different presentations of the structure
influence a reader’s interest and understanding (e.g. [35]). We
cannot influence the link structure in our case, but we can
influence the presentation, and a hierarchical presentation has
been found to be beneficial [36]. It has also been found that
characteristics of the reader, notably working memory capacity
and cognitive style, mediate the influence of structure [37].

Principle/Finding
Subjectiveness
Principle 1 (group
related parts)
Principle 2 (provide
information before
needed)

Principle 3 (prefer
grouping)

Principle 4 (chun-
king)

Principle 5 (closest
is neighbouring)
Principle 6 (under-
standable rules)
Macro structure

Importance order

Open questions

TABLE VI
RELATING THE FORMALIZATION TO THE EMPIRICAL FINDINGS

Way it is accounted for in the formalization

By changing the set of patterns, the comparison of tours can be adapted to different preferences or cognitive styles of reviewers.
A grouping pattern captures the notion of “all related change parts”, and the definition of the match set and its “is better than”
relation ensure that in a better tour more related change parts are close together.

It is hard to formalize the notion of provided information; not least because information structures in software are often cyclic, e.g.,
with the caller of a method providing information on why the callee exists and how it is used and the callee providing information
about its pre- and postconditions. Currently, reviewers often resort to heuristics like going bottom-up or top-down along the call
flow, and these heuristics can be included in the formalization in the grouping pattern’s rating function.

A pattern match is only included in the match set if the matched parts are close together, and the rating function is only relevant
for matches included in the match set. This is a very strict interpretation of the principle; it was chosen because the participants of
the survey rated tours with intervening unrelated change parts low, independent of the distance: For 85 of 113 (75%) respondents a
tour with one unrelated change part in between was rated as “not very useful” or “not at all useful”, and almost the same number
said this for two unrelated change parts in between (82 of 113).

The notion of chunking is formalized by the recursive evaluation of m.S on shrunk tours and graphs.

This principle is more relevant to the presentation of the change parts in the review tool and therefore not explicitly integrated into
the formalization.

The grouping patterns as a central part of the formalization can be easily explained to software developers. Furthermore, they can
be made explicit to the reviewer.

We noticed that applying the ordering principles generally leads to a sensible macro structure, too, mostly due to the inclusion of
the chunking principle. Therefore, we did not take further measures regarding the macro structure.

The importance of a change part for review has not been included in the formalization. Instead, we propose to remove clearly
unimportant change parts from the review scope and to optimize the order of the remaining for understandability.

There are a number of areas where data is lacking for a grounded formalization, e.g., how to best include differing strengths of
gradual relations or differing priorities of grouping patterns. Therefore, we took a conservative approach and defined the relation
> to be partial, with the downside that many tours end up as incomparable.

The notion of ‘guided tours’ has also been proposed for
hypertext [38]. In addition, Hammond and Allison [39] sug-
gest the metaphors of “go-it-alone” (similar to the targeted
navigation briefly mentioned in Section II-A) and of “map
navigation” (similar to the need of our participants to get an
overview). An approach to automatically create such guided
tours has been proposed by Guinan and Smeaton [40]. Like
us, they use patterns to determine the order of the nodes.

C. Empirical Findings on Real-World Code Structure

We expect that developers in long-living projects try to
structure their code in a way that helps understanding. There-
fore, we looked for empirical results on the order of methods
and fields in software systems. We found two: Biegel et
al. observed that in many cases, the code adheres to the
structure specified in the Java Code Conventions published
by Sun/Oracle, and that a clustering by visibility is also quite
common [41]. They could also observe semantic clustering
(by common key terms), whereas alphabetic order was rare.
Geffen and Maoz studied a number of different criteria, also
on open-source Java projects but with a stronger focus on call-
flow relationships [42]. They found that a “calling” criterion
of having a callee after the caller (i.e., top-down) is often
satisfied. Regarding the conflicting results on top-down vs
bottom-up between the interviews and survey, this can be
regarded as a point in favor of top-down. The article of Geffen
and Maoz also contains results on a second study: They tested
experimentally whether clustering or sorting by call-flow helps
to understand code faster. Their results are not statistically
significant, but they show a tendency that a random order
is worst and a combination of clustering and sorting is best,
especially for inexperienced developers.

D. Clustering of Program Fragments and Change Parts

After the importance of grouping in an optimal tour became
clear, we started to look at existing approaches for clustering
in software. Many clustering approaches exploit structural
[43] and similarity relations [44], possibly augmented with
latent semantic analysis [45]. Often clustering is performed
using randomized meta-heuristics, an approach we regard
as incompatible with Principle 6 (understandable rules). In
contrast, the ACDC approach of Tzerpos and Holt [46] is
based on recognizing patterns in subsystem structures and
encouraged us to pursue a similar approach.

Our work is different from most existing approaches in that
we are dealing with relations between change parts instead of
program fragments. A line of research that also deals with the
clustering of change parts is “change untangling” [47], [48]. A
number of approaches have been proposed that cluster changes
based on heuristics and pattern matching [9], [49], [50], [51].
Future work should check whether these approaches can be
adjusted to help in finding an optimal tour.

E. Program Comprehension: Empirical Findings and Theories

A number of theories on the cognitive processes of deve-
lopers during code comprehension have been proposed. De-
velopers sometimes use ‘bottom-up comprehension’, i.e., they
combine and integrate parts of the program into increasingly
complete mental models. On other occasions, they employ
‘top-down comprehension’, either inference-based by using
beacons in the code or expectation-based guided by hypotheses
[52]. They switch between these modes depending on their
knowledge, the needs of the task, and other factors [53], [54].
The survey by Storey [55] provides further information.

Recent studies looked at the navigation behavior of deve-
lopers during debugging and maintenance. It was found that
‘information foraging theory’ provides a more accurate pattern
of navigation behavior than hypothesis-driven exploration [56],
[57]. In information foraging, developers follow links bet-
ween program fragments. These links are largely based on
dependencies. The importance of links/relations for developer
navigation has also been noted in other studies [58], [59], [60].
A comparison of developers with differing experience showed
that effective developers navigate by following structural in-
formation [61] and make more use of chunking [62].

Storey et al. [63] combined empirical findings from the
literature to derive guidelines for tools that support program
comprehension. The theory described in the current article
paves the way towards such a tool, therefore their guidelines
should be partly reflected in our findings. Our approach
is mainly meant to enhance bottom-up comprehension, and
we regard their elements “reduce the effect of delocalized
plans” (by grouping) and “provide abstraction mechanisms”
(by hierarchical chunking) to be applicable to our approach.
By allowing the reviewers to also explore the source code on
their own, some more of their elements can be satisfied.

The cognitive processes during review have been studied
by Hungerford et al. for reviewing design documents [64].
They found that a ‘Concurrent Across Diagrams’ strategy,
i.e., reading with frequent switches between related parts of
diagrams, seems to be most effective.

F. Reading Techniques

Reading techniques [65], i.e., instructions on how to read
a software work product, have been studied extensively in
the context of Inspections. The code reading techniques that
are most closely related to our work are ‘“abstraction based
reading” [66], “use case/usage based reading” [67] and “functi-
onality based reading” [68]. “Abstraction based reading” has
been proposed by Dunsmore et al. to overcome problems
with delocalization in the review of object-oriented code. It
is based on forming summaries of a program in a bottom-
up style. “Usage-based reading” and “functionality-based re-
ading” work instead by tracing use cases/functionality in a
top-down style. These reading techniques showed promising
results in controlled experiments, but some of these could not
be consistently replicated in further studies [69], [70], [71].

A commonality that all these reading techniques share
with our technique to find optimal tours is that they include
structural information, namely call-flow and data-flow. But
there are two main differences. The first is technical: We
are focusing on change-based code review and therefore on
ordering change parts, while the presented reading techniques
have been defined based on a single version of the code.
The second difference concerns the underlying assumptions:
Many reading techniques try to actively guide the reviewer and
enforce strict guidelines for the reading process. The evidence
whether active guidance is indeed beneficial is inconclusive
[72], [73]. Enforcing strict guidelines is regarded as conflicting
with theories of software cognition [74] and seen as too

rigid by software developers [75]. In our work we take a
different position: The reviewer and the review tool form a
joint cognitive system [23]. The tool is there to help the
reviewers by reducing their cognitive load, but the reviewers
are flexible in whether they want to follow the tool’s guiding
or explore the code change on their own instead.

VII. FUTURE WORK

The most important next step is to increase confidence in
the theory, by systematically testing it with both controlled
experiments and in a real-world setting after inclusion in a
code review tool. The possibility that providing an ‘optimal’
tour could passivate the reviewer and therefore lower review
effectiveness is worth investigating.

Open questions to improve the theory are whether and
which relation types are (more) important. Further impro-
vements could be obtained by gaining more data on differences
between deletions, changes, and additions; especially, we
studied deletions only marginally.

The notion of a tour as a permutation of the change parts
could also be reconsidered: It could be beneficial to re-visit
change parts or even to visit unchanged parts of the code. And
re-framing the goal from determining an optimal tour at the
start of the review to recommending a good next change part at
any time during the review, which allows taking the reviewer’s
navigation history into account, appears to be worthwhile.

VIII. CONCLUSION

We studied what makes one change part order better than
another for review. We used a mixed methods approach,
combining insights from task-guided interviews, an online
survey, logs of code reviews in industry, and the literature.

We derived 6 principles that describe what a good order
is and how it should be presented: In short, related change
parts should be close together, they should be ordered (if the
grouping allows it) so that information is provided before it is
needed, and the resulting hierarchical clustering should make
sense to a human reviewer. We formalized these principles
by giving a middle-range theory that defines a partial order
relation > among review tours. It uses the notion of finding
patterns in the graph of relations among the change parts. Our
propositions are based on the belief that the code reviewer and
the review tool form a joint cognitive system so that review
efficiency can be increased by moving cognitive load from the
reviewer to the tool.

ACKNOWLEDGMENT

The authors would like to thank all participants of the
interviews, the pre-tests, and the survey. We furthermore thank
Leif Singer for his help with contacting the GitHub users
for the survey. Bacchelli gratefully acknowledges the support
of the Swiss National Science Foundation through the SNF
Project No. PPOOP2_170529.

[1]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]
(12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182-211, 1976.
T. Baum, O. Liskin, K. Niklas, and K. Schneider, “A faceted classifi-
cation scheme for change-based industrial code review processes,” in
Software Quality, Reliability and Security (QRS), 2016 IEEE Internati-
onal Conference on. Vienna, Austria: IEEE, 2016.

P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. Saint Petersburg, Russia: ACM, 2013, pp.
202-212.

M. Bernhart and T. Grechenig, “On the understanding of programs with
continuous code reviews,” in Program Comprehension (ICPC), 2013
IEEE 21st International Conference on. San Francisco, CA, USA:
IEEE, 2013, pp. 192-198.

T. Baum, H. LeBmann, and K. Schneider, “The choice of code review
process: A survey on the state of the practice,” in Product-Focused
Software Process Improvement: 18th International Conference, PROFES
2017, Innsbruck, Austria, November 29 - December 01, 2017, Procee-
dings. Springer, 2017, to appear.

G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering. Hyderabad, India:
ACM, 2014, pp. 345-355.

Github. [Online]. Available: https://github.com

T. Baum and K. Schneider, “On the need for a new generation of
code review tools,” in Product-Focused Software Process Improvement:
17th International Conference, PROFES 2016, Trondheim, Norway,
November 22-24, 2016, Proceedings 17. Springer, 2016, pp. 301-308.
M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri, “Helping developers
help themselves: Automatic decomposition of code review changesets,”
in Proceedings of the 2015 International Conference on Software
Engineering. IEEE Press, 2015.

D. L. Sjgberg, T. Dyba, B. C. Anda, and J. E. Hannay, “Building theories
in software engineering,” in Guide to advanced empirical software
engineering. Springer, 2008, pp. 312-336.

B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine, 1967.

B. G. Glaser, Theoretical Sensitivity — Advances in the Methodology of
Grounded Theory. The Sociology Press, 1978.

Q. Zhang, “Improving software development process and project mana-
gement with software project telemetry,” Ph.D. dissertation, University
of Hawaii, 2006.

T. Baum, K. Schneider, and A. Bacchelli. (2017) Online material for
”On the optimal order of reading source code changes for review”.
[Online]. Available: http://dx.doi.org/10.6084/m9.figshare.5236150

B. Hanington and B. Martin, Universal methods of design: 100 ways
to research complex problems, develop innovative ideas, and design
effective solutions. Rockport Publishers, 2012.

D. Spencer, “Card sorting: a definitive guide,”
http://boxesandarrows.com/card-sorting-a-definitive-guide/, 2004.

R. Jacob, A. Heinz, and J. P. Décieux, Umfrage: Einfiihrung in die
Methoden der Umfrageforschung. Walter de Gruyter, 2013.

A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics
and biases,” in Utility, probability, and human decision making. Sprin-
ger, 1975, pp. 141-162.

C. Oezbek and L. Prechelt, “Jtourbus: Simplifying program under-
standing by documentation that provides tours through the source
code,” in Software Maintenance, 2007. ICSM 2007. IEEE International
Conference on. 1EEE, 2007, pp. 64-73.

K. Schneider, “Prototypes as assets, not toys: why and how to extract
knowledge from prototypes,” in Proceedings of the 18th International
Conference on Software Engineering. 1TEEE Computer Society, 1996,
pp. 522-531.

S. Biffl, “Analysis of the impact of reading technique and inspector
capability on individual inspection performance,” in Software Engineer-
ing Conference, 2000. APSEC 2000. Proceedings. Seventh Asia-Pacific.
IEEE, 2000, pp. 136-145.

Systems and software engineering—Vocabulary ISO/IEC/IEEE 24765:
2010, IEEE Standards Association and others Std. 24 765, 2010.

A. Walenstein, “Observing and measuring cognitive support: Steps
toward systematic tool evaluation and engineering,” in Program Com-

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

prehension, 2003. 11th IEEE International Workshop on.
pp. 185-194.

J. Siegmund, C. Kistner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding understanding source
code with functional magnetic resonance imaging,” in Proceedings of
the 36th International Conference on Software Engineering. ACM,
2014, pp. 378-389.

B. Floyd, T. Santander, and W. Weimer, “Decoding the representation of
code in the brain: An fmri study of code review and expertise,” in Pro-
ceedings of the 39th International Conference on Software Engineering
(ICSE), 2017.

S. Gopferich, “Comprehensibility assessment using the Karlsruhe com-
prehensibility concept,” The Journal of Specialised Translation, vol. 11,
no. 2009, pp. 31-52, 2009.

I. Langer, F. S. von Thun, and R. Tausch, Sich verstindlich ausdriicken,
9th ed. E. Reinhardt, 2011.

L. T. Frase, “Paragraph organization of written materials: The influence
of conceptual clustering upon the level and organization of recall.”
Learning and instructional Processes, 1969.

B. J. Meyer, “Reading research and the composition teacher: The
importance of plans,” College composition and communication, pp. 37—
49, 1982.

A. C. Graesser, D. S. McNamara, and M. M. Louwerse, “What do
readers need to learn in order to process coherence relations in narrative
and expository text,” Rethinking reading comprehension, pp. 82-98,
2003.

W. Kintsch, T. S. Mandel, and E. Kozminsky, “Summarizing scrambled
stories,” Memory & Cognition, vol. 5, no. 5, pp. 547-552, 1977.

R. A. Yaros, “Is it the medium or the message? structuring complex news
to enhance engagement and situational understanding by nonexperts,”
Communication Research, vol. 33, no. 4, pp. 285-309, 2006.

J. B. Black and G. H. Bower, “Story understanding as problem-solving,”
Poetics, vol. 9, no. 1-3, pp. 223-250, 1980.

D. S. McNamara, E. Kintsch, N. B. Songer, and W. Kintsch, “Are
good texts always better? interactions of text coherence, background
knowledge, and levels of understanding in learning from text,” Cognition
and instruction, vol. 14, no. 1, pp. 143, 1996.

R. A. Yaros, “Effects of text and hypertext structures on user interest
and understanding of science and technology,” Science Communication,
vol. 33, no. 3, pp. 275-308, 2011.

H. Potelle and J.-F. Rouet, “Effects of content representation and readers’
prior knowledge on the comprehension of hypertext,” International
Journal of Human-Computer Studies, vol. 58, no. 3, pp. 327-345, 2003.
D. DeStefano and J.-A. LeFevre, “Cognitive load in hypertext reading:
A review,” Computers in human behavior, vol. 23, no. 3, pp. 1616-1641,
2007.

R. H. Trigg, “Guided tours and tabletops: tools for communicating in
a hypertext environment,” ACM Transactions on Information Systems
(TOIS), vol. 6, no. 4, pp. 398-414, 1988.

N. Hammond and L. Allinson, “Travel around a learning support
environment: rambling, orienteering or touring?” in Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM,
1988, pp. 269-273.

C. Guinan and A. F. Smeaton, “Information retrieval from hypertext
using dynamically planned guided tours,” in Proceedings of the ACM
conference on Hypertext. ACM, 1992, pp. 122-130.

B. Biegel, F. Beck, W. Hornig, and S. Diehl, “The order of things: How
developers sort fields and methods,” in Software Maintenance (ICSM),
2012 28th IEEE International Conference on. IEEE, 2012, pp. 88-97.
Y. Geffen and S. Maoz, “On method ordering,” in Program Comprehen-
sion (ICPC), 2016 IEEE 24th International Conference on, 2016.

S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner,
“Using automatic clustering to produce high-level system organizations
of source code.” in IWPC, vol. 98, 1998, pp. 45-52.

A. Kuhn, S. Ducasse, and T. Girba, “Enriching reverse engineering
with semantic clustering,” in 12th Working Conference on Reverse
Engineering (WCRE’05). 1EEE, 2005, pp. 10—pp.

J. I. Maletic and A. Marcus, “Using latent semantic analysis to identify
similarities in source code to support program understanding,” in Tools
with Artificial Intelligence, 2000. ICTAI 2000. Proceedings. 12th IEEE
International Conference on. 1EEE, 2000, pp. 46-53.

V. Tzerpos and R. C. Holt, “Acdc: an algorithm for comprehension-
driven clustering,” in Reverse Engineering, 2000. Proceedings. Seventh
Working Conference on. 1EEE, 2000, pp. 258-267.

IEEE, 2003,

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

K. Herzig and A. Zeller, “The impact of tangled code changes,” in Mi-
ning Software Repositories (MSR), 2013 10th IEEE Working Conference
on. IEEE, 2013, pp. 121-130.

M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Untan-
gling fine-grained code changes,” in Software Analysis, Evolution and
Reengineering, 2015 IEEE 22nd International Conference on. IEEE,
2015, pp. 341-350.

Y. Tao and S. Kim, “Partitioning composite code changes to facilitate
code review,” in Mining Software Repositories (MSR), 2015 IEEE/ACM
12th Working Conference on. 1EEE, 2015, pp. 180-190.

S. Platz, M. Taeumel, B. Steinert, R. Hirschfeld, and H. Masuhara,
“Unravel programming sessions with thresher: Identifying coherent and
complete sets of fine-granular source code changes,” in Proceedings of
the 32nd JSSST Annual Conference, 2016.

J. Matsuda, S. Hayashi, and M. Saeki, “Hierarchical categorization
of edit operations for separately committing large refactoring results,”
in Proceedings of the 14th International Workshop on Principles of
Software Evolution. ACM, 2015, pp. 19-27.

M. P. O’Brien and J. Buckley, “Inference-based and expectation-based
processing in program comprehension,” in Program Comprehension,
2001. IWPC 2001. Proceedings. 9th International Workshop on. 1EEE,
2001, pp. 71-78.

A. M. Vans, A. von Mayrhauser, and G. Somlo, “Program understan-
ding behavior during corrective maintenance of large-scale software,”
International Journal of Human-Computer Studies, vol. 51, pp. 31-70,
1999.

A. von Mayrhauser and A. M. Vans, “Industrial experience with an
integrated code comprehension model,” Software Engineering Journal,
vol. 10, no. 5, pp. 171-182, 1995.

M.-A. Storey, “Theories, tools and research methods in program com-
prehension: past, present and future,” Software Quality Journal, vol. 14,
no. 3, pp. 187-208, 2006.

J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Using information
scent to model the dynamic foraging behavior of programmers in main-
tenance tasks,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2008, pp. 1323-1332.

J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information fora-
ging theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197-215, 2013.

T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Briunlich,
“Developers’ code context models for change tasks,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 7-18.

Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in industry,”
in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, 2012.

A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” Software Engineering, IEEE Tran-
sactions on, vol. 32, no. 12, pp. 971-987, 2006.

M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective
developers investigate source code: An exploratory study,” Software
Engineering, IEEE Transactions on, vol. 30, no. 12, pp. 889-903, 2004.
T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers, “Program
comprehension as fact finding,” in Proceedings of the the 6th joint
meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering.
ACM, 2007, pp. 361-370.

M.-A. Storey, F. D. Fracchia, and H. A. Miiller, “Cognitive design
elements to support the construction of a mental model during software
exploration,” Journal of Systems and Software, vol. 44, no. 3, pp. 171-
185, 1999.

B. C. Hungerford, A. R. Hevner, and R. W. Collins, “Reviewing
software diagrams: A cognitive study,” IEEE Transactions on Software
Engineering, vol. 30, no. 2, pp. 82-96, 2004.

V. Basili, G. Caldiera, F. Lanubile, and F. Shull, “Studies on reading
techniques,” in Proc. of the Twenty-First Annual Software Engineering
Workshop, vol. 96, 1996, p. 002.

A. Dunsmore, M. Roper, and M. Wood, “Systematic object-oriented in-
spection — an empirical study,” in Proceedings of the 23rd International
Conference on Software Engineering. 1EEE Computer Society, 2001,
pp. 135-144.

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

T. Thelin, P. Runeson, and B. Regnell, “Usage-based reading—an
experiment to guide reviewers with use cases,” Information and Software
Technology, vol. 43, no. 15, pp. 925-938, 2001.

Z. Abdelnabi, G. Cantone, M. Ciolkowski, and D. Rombach, “Com-
paring code reading techniques applied to object-oriented software
frameworks with regard to effectiveness and defect detection rate,” in
Empirical Software Engineering, 2004. ISESE’04. Proceedings. 2004
International Symposium on. 1EEE, 2004, pp. 239-248.

A. Dunsmore, M. Roper, and M. Wood, “The development and evalu-
ation of three diverse techniques for object-oriented code inspection,”
Software Engineering, IEEE Transactions on, vol. 29, no. 8, pp. 677—
686, 2003.

M. Skoglund and V. Kjellgren, “An experimental comparison of the
effectiveness and usefulness of inspection techniques for object-oriented
programs,” in 8th International Conference on Empirical Assessment in
Software Engineering (EASE 2004). 1ET, 2004.

D. A. McMeekin, “A software inspection methodology for cognitive
improvement in software engineering,” Ph.D. dissertation, Curtin Uni-
versity of Technology, 2010.

C. Denger, M. Ciolkowski, and F. Lanubile, “Does active guidance im-
prove software inspections? a preliminary empirical study.” in JASTED
Conf. on Software Engineering, 2004, pp. 408—413.

F. Lanubile, T. Mallardo, F. Calefato, C. Denger, and M. Ciolkow-
ski, “Assessing the impact of active guidance for defect detection: a
replicated experiment,” in Software Metrics, 2004. Proceedings. 10th
International Symposium on. 1EEE, 2004, pp. 269-278.

D. J. Cooper, B. R. von Konsky, M. C. Robey, and D. A. McMeekin,
“Obstacles to comprehension in usage based reading,” in Software
Engineering Conference, 2007. ASWEC 2007. 18th Australian. 1EEE,
2007, pp. 233-244.

D. A. McMeekin, B. R. von Konsky, E. Chang, and D. J. Cooper, “Eva-
luating software inspection cognition levels using bloom’s taxonomy,” in
Software Engineering Education and Training, 2009. CSEET’09. 22nd
Conference on. 1EEE, 2009, pp. 232-239.

