Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Associating Working Memory Capacity and Code
Change Ordering with Code Review Performance

Tobias Baum - Kurt Schneider -
Alberto Bacchelli

Received: date / Accepted: date

Abstract Change-based code review is a software quality assurance technique
that is widely used in practice. Therefore, better understanding what influences
performance in code reviews and finding ways to improve it can have a large
impact. In this study, we examine the association of working memory capacity
and cognitive load with code review performance and we test the predictions
of a recent theory regarding improved code review efficiency with certain code
change part orders. We perform a confirmatory experiment with 50 partic-
ipants, mostly professional software developers. The participants performed
code reviews on one small and two larger code changes from an open source
software system to which we had seeded additional defects. We measured their
efficiency and effectiveness in defect detection, their working memory capacity,
and several potential confounding factors. We find that there is a moderate
association between working memory capacity and the effectiveness of finding
delocalized defects, influenced by other factors, whereas the association with
other defect types is almost non-existing. We also confirm that the effectiveness
of reviews is significantly larger for small code changes. We cannot conclude
reliably whether the order of presenting the code change parts influences the
efficiency of code review.

Keywords Change-based Code Review - Working Memory - Individual
Differences - Code Ordering - Cognitive Support - Cognitive Load

Tobias Baum / Kurt Schneider

Fachgebiet Software Engineering

Leibniz University Hannover

Germany

E-mail: {firstname.lastname}@inf.uni-hannover.de

Alberto Bacchelli

ZEST

University of Zurich
Switzerland

E-mail: bacchelli@ifi.uzh.ch

2 Tobias Baum et al.

1 Introduction

Code Review, i.e., the reading and checking of source code by developers
other than the code’s author (Fagan, 1976), is a widespread software quality
assurance technique (Baum et al, 2017a). In recent years, code review in in-
dustry has moved from traditional Fagan Inspection (Fagan, 1976) to ‘change-
based code review’ (Baum et al, 2016a; Rigby and Bird, 2013; Bernhart and
Grechenig, 2013), in which teams determine the review scope based on code
changes, such as commits, patches, or pull requests (Gousios et al, 2014).!

Code review performance is traditionally measured as the share of defects
found (effectiveness) and defects found per unit of time (efficiency) (Biff,
2000). Past research (e.g., Porter et al (1998); Bacchelli and Bird (2013)) has
provided evidence that human factors determine code review performance to
a large degree. Therefore, various researchers recently focused on investigat-
ing how automated tooling can help humans to perform reviews with higher
efficiency and effectiveness (Baum and Schneider, 2016; Thongtanunam et al,
2015b; Balachandran, 2013; Tao and Kim, 2015; Barnett et al, 2015; Kalyan
et al, 2016).

Much research on automated tools to help during code review is explic-
itly or implicitly based on the assumption that reducing the mental load of
reviewers improves their code review performance (Baum et al, 2017b). Cog-
nitive psychology uses the term mental load to denote the aspects of a task
(and environment) that influence its cognitive load, i.e., the workload on the
human cognitive system (Paas and Van Merriénboer, 1994).2 Cognitive load is
also influenced by factors depending on the human, like the working memory
capacity and the invested mental effort. Cognitive load, in turn, can influence
task performance, especially in situations of overload. In other words: Review-
ers need to understand the code change under review and relate its parts to
other code portions and to background information. Automated tooling for
code review is based on the assumption that the more cognitive resources
are available for these understanding tasks, the better performance should be.
Mental /cognitive load is not the only framework used to guide research on
improved review tooling. Other studies assume instead that it is crucial that
the reviewer works actively (e.g., Denger et al (2004)) or has high discipline
in systematic reading (e.g., Basili et al (1996)). Which of these frameworks,
and in which situations, is most adequate and to what extent is still an open
question.

In the current study we investigate a selection of practically relevant as-
pects of the cognitive load framework: If the cognitive load of relating code
parts to each other is associated with code review performance, reviewers with
a higher working memory capacity should perform better under high load. This

L For consistency, we will stick to the term ‘code change’ (Baum et al, 2017b) throughout
this article. We could also use ‘patch’ since every code change in the study corresponds to
a single patch.

2 Stated simply, the ‘human cognitive system’ is the part of the human brain responsible
for thinking.

Working Memory, Code Ordering and Code Review Performance 3

would have implications for reviewer selection and teaching. Secondly, mental
load will increase with the size and complexity of the code change, and thus
review performance should be lower for more complex code changes. Further-
more, our recent research (Baum et al, 2017b) proposes that an automatic
improvement of the order in which the parts of the code change (e.g., changed
methods or changed files) are presented to the reviewer can reduce mental load
and thus increase review performance.

To investigate these hypotheses, we performed an experiment in which 50
software developers (46 being professionals) spent a median time of 84 minutes
each, performing one small and two large change-based reviews. We measured
time spent, found defects, as well as a subjective assessment of relative mental
load; for 45 of the participants we also measured the working memory capacity.

We find that working memory capacity is associated with aspects of the
code review performance, namely the effectiveness of finding delocalized de-
fects®; while there is only a very weak association with other defect types.
We get confirmatory evidence that larger, more complex changes are asso-
ciated with lower defect detection effectiveness, thereby triangulating results
from earlier studies. For the effect of change part ordering, our findings are
less conclusive: There is insufficient evidence to allow robust conclusions that
change part ordering has an effect on code review performance. Our find-
ings suggest that the general tendency and the qualitative data is compatible
with the predictions in our previous work (Baum et al, 2017b): non-inferior
and sometimes superior review effectiveness for theoretically better code or-
ders. But we do not reach statistical significance here. Not having attained
the sample size indicated by power analysis could have had an effect on this
result.

We regard the results about working memory capacity as the most impor-
tant of our findings: Firstly, they help to understand cognitive processes during
code review. Secondly, they can be interpreted in a negative sense (“there is
an association, but it is not extremely strong and only for certain defects”).
This interpretation indicates that reviewers with average cognitive abilities can
still deliver valuable review results and they support the use of heterogeneous
review teams in practice.

Summing up, this study makes the following contributions:

— The first study on the association between working memory capacity and
code review effectiveness, which provides evidence that working memory
capacity is only associated with effectiveness for certain kinds of defects.

— Confirmation from a controlled experiment that review effectiveness is
higher for smaller code changes.

— Quantitative empirical data on the influence of change part ordering on
mental load and review performance. The goal of this work was to start
testing the theory that we put forward in our earlier work (Baum et al,

3 defects for which knowledge of several parts of the code needs to be combined to find
them

4 Tobias Baum et al.

2017b). We do not reach statistical significance in this regard, but future
meta-analyses can build upon our data.

— A dataset (Baum et al, 2018) of the review sessions belonging to the experi-
ment as a foundation for further research, containing, for example, detailed
review results and navigation patterns.

— Experiences with a research design for performing an experiment online
in a browser-based setting (which we used to ease access to professional
developers and to control the ensuing threats to validity) and its software
implementation (Baum et al, 2018).

We hope that our results will be a stepping stone towards a better un-
derstanding of the cognitive processes during code review and that they can
stimulate further research on improved review tooling, code reviewer selection,
and code review education.

2 Background and Related Work

In the following, we describe key terms from previous work that we are building
upon, like working memory, cognitive and mental load, delocalized defects and
ordering of code for review. We also survey existing findings in related areas.
For easier reference, Table 1 at the end of this section shows a summary of
important terminology we introduce.

2.1 Cognitive Load and Working Memory

Cognitive load is “a multidimensional construct that represents the load that
performing a particular task imposes on the cognitive system” (Paas and
Van Merriénboer, 1994). Two parts of its substructure are the mental load
exerted by the task and the mental effort spent on the task. As an example,
consider the task of adding numbers in the head. The more digits the num-
bers have, the more mental load is exerted by the task. Now consider a young
child and an older student: With the same amount of mental effort, the older
student can solve summing tasks that are more complex (i.e., have a higher
mental load) than those the child can solve.

Various theories use cognitive load to explain performance on cognitive
tasks. An example is the cognitive load theory for learning (Sweller, 1988),
which predicts that better learning success is achieved by avoiding extraneous
cognitive load.

The capacity of human working memory (Wilhelm et al, 2013) greatly in-
fluences cognitive load. Cognitive psychology defines working memory as a part
of human memory that is needed for short-term storage during information
processing. Working memory is used when combining information, for exam-
ple, when reading a sentence and determining which previously read word a
pronoun refers to. The capacity of working memory in terms of distinct items
is limited (Cowan, 2010). To overcome this limitation, items can be combined

Working Memory, Code Ordering and Code Review Performance 5

by ‘chunking’ (Simon, 1974; Miller, 1956) to form new items (e.g., when con-
secutive words are chunked to a semantic unit). Working memory capacity
can be measured using ‘complex span tests’ (Daneman and Carpenter, 1980),
in which time-limited recall and cognitive processing tasks are interleaved,
and the number of correctly remembered items forms the memory span score.
This score has been shown to be associated with many cognitive tasks, for
example, the understanding of text (Daneman and Carpenter, 1980; Dane-
man and Merikle, 1996) and hypertext (DeStefano and LeFevre, 2007). In the
context of software engineering, Bergersen and Gustafsson (2011) studied the
influence of working memory on programming performance. They found that
such an influence exists, yet it is mediated through programming knowledge,
which, in turn, is influenced by experience. More experience allows for more
efficient chunking and should, therefore, lead to lower cognitive load. In line
with this prediction, Crk et al (2016) found reduced cognitive load during code
understanding for more experienced participants in the analysis of electroen-
cephalography (EEG) data.

2.2 Working Memory and Code Review

For code review, there is evidence of the influence of expertise on effectiveness
(e.g., McIntosh et al (2015)), but no studies on the influence of working mem-
ory capacity on code review performance. Hungerford et al (2004) studied cog-
nitive processes in reviewing design diagrams and observed different strategies
with varying performance. In a think-aloud protocol analysis study, Robbins
and Carver (2009) analyzed cognitive processes in perspective-based reading.
One of their observations is that combining knowledge leads to a higher number
of defects found. When studying the cognitive level of think-aloud statements
during reviews, McMeekin et al (2009) found that more structured techniques
lead to higher cognition levels. Recent work by Ebert et al (2017) tries to
measure signs of confusion from remarks written by the reviewers. The model
of human and computer as a joint cognitive system (Dowell and Long, 1998),
also called distributed cognition, has been proposed by Walenstein to study
cognitive load in software development tools (Walenstein, 2003, 2002).

Summing up, a combination of three reasons make associating working
memory capacity and review performance seem like a promising field to study:
(1) The reviewer’s abilities are important in code reviews. (2) There is a lack
of research on the influence of working memory on reviews. (3) There exist
promising results in the area of natural language understanding.

2.3 Mental Load of Reviews: Change Size and Change Untangling

One likely determinant of a change-based review’s mental load is the code
change’s size and complexity. The hypothesis that large, complex changes

6 Tobias Baum et al.

are detrimental to code review performance is reflected in many publica-
tions. An example is MacLeod et al.’s guideline to “aim for small, incremental
changes” (MacLeod et al, 2017), which can be found similarly also in the
earlier works by Rigby et al (2012) and Rigby and Bird (2013). These guide-
lines are generally based on interviews with developers and observations of
real-world practices. Similar guidelines also exist for code inspection (e.g., by
Gilb and Graham (1993)). In the context of design inspection in industry, Raz
and Yaung (1997) found support for higher detection effectiveness for smaller
review workloads. Rigby et al (2014) build regression models for review out-
comes based on data from open-source projects. They predict review interval
(i.e., time from the publication of a review request to the end of the review)
and the number of found defects. The nature of their data prevents them from
building models for review efficiency and effectiveness. They observe effects
for the number of reviewers and their experience, and also that an increased
change size (churn) leads to an increase in review interval and number of found
defects. In the light of our hypotheses, the latter observation should be the re-
sult of two confounded and opposing effects: A higher total number of defects
and a smaller review effectiveness in larger changes.

One opportunity to reduce the observed complexity of a code change is
‘change untangling’. Change untangling refers to splitting a large change that
consists of several unrelated smaller changes into these smaller changes, in line
with reducing the mental load to review each change. It has first been studied
by Herzig and Zeller (2013) and alternative approaches have been proposed
by Dias et al (2015), Platz et al (2016), and Matsuda et al (2015). Barnett
et al (2015) investigated change untangling in the context of code review and
obtained positive results in a user study. Tao and Kim (2015) also proposed to
use change untangling for review and showed in a user study that untangling
code changes can improve code understanding.

Summing up, many studies and guidelines for practitioners build on the
hypothesis that reducing change size and complexity is worthwhile. As we are
not aware of detailed data on the influence of change complexity on change-
based code review performance from controlled settings, we investigate it in
our study.

2.4 Ordering of Code Change Parts for Review, Reading Techniques, and
Delocalized Defects

When a reviewer gets in touch with a code change, he or she has to read it
in a certain order. Intuitively, an order is good when it helps the reviewer to
build up an understanding of the code change in a structured and incremental
fashion. On the other hand, an order that seems random and in which the
flow between related change parts is disturbed by other change parts might
hinder understanding. In this regard, Baum et al (2017b) argue: “The reviewer
and the review tool can be regarded as a joint cognitive system, and the
efficiency of this system can be improved by off-loading cognitive processes

Working Memory, Code Ordering and Code Review Performance 7

from the reviewer to the tool. ... A good order [of the way in which the
change parts are presented] helps [code change] understanding by reducing the
reviewer’s cognitive load and by an improved alignment with human cognitive
processes It helps checking for defects by avoiding speculative assumptions
and by easing the spotting of inconsistencies.”

They present six principles for a good order (Baum et al, 2017b):

Group related change parts as closely as possible.

Provide information before it is needed.

In case of conflicts between Principles 1 and 2 prefer Principle 1 (grouping).

Closely related change parts form chunks treated as elementary for further

grouping and ordering,.

5. The closest distance between two change parts is “visible on the screen at
the same time.”

6. To satisfy the other principles, use rules that the reviewer can understand.

Support this by making the grouping explicit to the reviewer.

W N e

They proceed by formalizing these principles and define a relation > (‘is
better than’) among orders of the change parts (called ‘tours’). When one
order is ‘better than’ another, it is predicted to lead to higher (or sometimes
equal) review efficiency (Baum et al, 2017b). As an example, assume there are
three change parts a, b, and ¢, of which a and b are related by similarity. Then
it holds that (a, b, ¢) >7 (a, ¢, b) and also that (¢, a, b) >7 (a, ¢, b). The tours
(a, b, ¢) and (¢, a, b) are incomparable with regard to >7, i.e., the theory does
not specify which of them is better. This ordering theory was derived based on
data from observations and surveys, but has not been tested directly so far.

Geffen and Maoz tested the influence of method ordering inside a class on
time for and correctness of understanding. They observe among other things
a tendency that putting methods related by call-flow together increases the
efficiency of understanding, especially for less experienced participants, but
their results did not reach statistical significance (Geffen and Maoz, 2016).
Another study of code ordering, but without the inclusion of a controlled
experiment, has been performed by Biegel et al (2012). Both of these studies
are rather exploratory and lack our theoretical underpinning regarding optimal
code ordering. All in all, there is currently a lack of firm empirical support that
the above-mentioned ordering principles will improve review performance. This
support is needed to confidently integrate the principles in software, which
could be an easy way to improve the performance of tool-assisted change-
based code reviews.

Other aspects of code review have been subject to more intense experimen-
tation, often in the context of classic Inspection. The use of reading techniques
to improve code review shares some similarities with change part ordering, as
a reading technique often prescribes a certain order of reading the source code.
Basili et al. summarize many early results on reading techniques (Basili et al,
1996). The theoretical background of many reading techniques differs from
ours in putting emphasis on forcing the reviewer into an active role and not
on reducing its mental load.

8 Tobias Baum et al.

Dunsmore et al (2000, 2001, 2003) put forward the claim that with the ad-
vent of object-oriented software development, delocalized programming plans
have become more common. This also leads to delocalized defects, i.e., defects
that can only be found (or at least found much more easily) when combining
knowledge about several parts of the code. They developed a reading technique
to cope with these delocalized defects and tested it in a series of experiments.
The order of reading that follows from their abstraction-based reading tech-
nique shares some similarities to that of Baum et al (2017b). They did not find
a significant influence of their technique on review effectiveness and did not
analyze review efficiency. When efficiency was later analyzed in an experiment
by Abdelnabi et al (2004), a positive effect could be found, and the results of
an experiment by Skoglund and Kjellgren (2004) are also largely compatible
with these findings.

As announced, Table 1 summarizes important terminology introduced in
this section.

Table 1 Summary of Important Terminology/Constructs.

Construct Description

Working Memory ‘Working memory’ is the part of human memory that is needed
for short-term storage during information processing. Its capac-
ity can be measured using ‘complex span tests’. (Wilhelm et al,
2013)

Cognitive Load ‘Cognitive load’ is a multidimensional construct that represents
the load that performing a particular task imposes on the hu-
man cognitive system. It depends on traits of the task, of the
environment, of the human (e.g., the working memory capacity)
and the mental effort spent. (Paas and Van Merriénboer, 1994)

Mental Load The term ‘mental load’ of a task is used to refer to the subset
of factors that influence the task’s cognitive load that depends
only on the task or environment, i.e., which is independent of
subject characteristics. (Paas and Van Merriénboer, 1994)

Code Change The ‘code change’ consists of all changes to source files per-
formed in the unit of work (Baum et al, 2016a) under review.
The code change defines the scope of the review, i.e., the parts
of the code base that shall be reviewed. (Baum et al, 2017b)

Change Part The elements of a code change are called ‘change parts’. In its
simplest form, a change part corresponds directly to a change
hunk as given by the Unix diff tool or the version control sys-
tem. (Baum et al, 2017b) In the context of our study, we com-
bined hunks from the same method into one change part.

Tour A ‘tour’ is a sequence (permutation) of all change parts of a
code change. (Baum et al, 2017b) We also use ‘code change
part order’ as a synonym.

Delocalized Defect A defect that can only be found or found much more eas-
ily by combining knowledge about several parts of the source
code. (Dunsmore et al, 2001)

Review Efficiency ‘Review efficiency’ is the number of defects found per review
hour invested. (Biffl, 2000)

Review Effectiveness ‘Review effectiveness’ is the ratio of defects found to all defects
in the code change. (Biffl, 2000)

Review Performance In this article, we consider ‘review performance’ to consist of
review efficiency and review effectiveness.

Working Memory, Code Ordering and Code Review Performance 9

3 Experimental Design

In the following, we detail the design of our experiment.

3.1 Research Questions and Hypotheses

We structure our work along three research questions, which we introduce
in the following. After each research question, we formalize it as null and
alternative hypotheses.

Based on the importance of human factors for improving code review per-
formance (Sauer et al, 2000), prior research in text and hypertext compre-
hension that shows an influence of working memory capacity on comprehen-
sion (DeStefano and LeFevre, 2007), and the aforementioned hypotheses by
Baum et al (2017b), we ask:

RQ;. Is the reviewer’s working memory capacity associated with code
review effectiveness?

Comparing and mentally combining different parts of the object under re-
view may help in finding defects (Hungerford et al, 2004; Robbins and Carver,
2009) and we hypothesize that higher working memory capacity is beneficial
in doing so. Therefore, we look for differences in the number of defects found.
We also analyze the subset of delocalized defects. We use one-sided tests and
have the following null and alternative hypotheses:

Hi10 There is no correlation between the total number of found de-
fects and working memory span scores.

Hy 1.4 Thereis a positive correlation between the total number of found
defects and working memory span scores.

Hi59 There is no correlation between the total number of found de-
localized defects and working memory span scores.

Hi 5.4 Thereis a positive correlation between the total number of found
delocalized defects and working memory span scores.

Earlier work brought evidence that large, complex* code changes are detri-
mental to review performance, albeit this evidence is mostly based on qualita-
tive or observational data (MacLeod et al, 2017; Raz and Yaung, 1997; Rigby
and Storey, 2011). Because much work builds upon this hypothesis, we report
on more reliable support and quantitative data from a controlled setting for
it:

RQ5. Does higher mental load in the form of larger, more complex code
changes lead to lower code review effectiveness?

4 Size and complexity are often highly correlated (Hassan, 2009), therefore, we do not
treat them separately in the current article.

10 Tobias Baum et al.

Specifically, we hypothesize that more complex changes pose higher cogni-
tive demands on the reviewer, leading to lower review effectiveness. The effect
on review efficiency is harder to predict: The higher cognitive load may de-
motivate reviewers and make them review faster (skimming), but it may also
lead to longer review times. Consequently, we only test for the effect of code
change size on effectiveness formally.

The probability of detection can vary greatly between different defect types.
Therefore, we select one particular defect type for this RQ: the swapping of
arguments in a method call, a specific kind of delocalized defect.® Among the
defects seeded into the code changes, three are such swapping defects: one
defect in the small code change (Swapw) and two defects in one of the large
code changes (Swapg; and Swapgs; jointly referred to as Swapy with d as a
placeholder in the following). The corresponding null and alternative one-sided
hypotheses take the general form:

Hy 4> .<n>.0 The detection probability for Swapwy and Swapy is the
same when Swapy is in the n-th review.

Hy 4> .<n>.4 The detection probability for Swapyy is larger than
the detection probability for Swapg when Swapy is in
the n-th review.

With all combinations of d=‘S1’ or ‘S2’ and n="‘first large review’ or ‘second
large review’, we have four null and four alternative hypotheses.

There are many possibilities to reduce the cognitive load during code re-
view, e.g., change untangling or detection of systematic changes (Zhang et al,
2015). In our recent theory, we argue that optimizing the order of presenting
the code is another such possibility (Baum et al, 2017b). We test this claim:

RQj3. Can the order of presenting code change parts to the reviewer in-
fluence code review efficiency, and does this depend on working memory
capacity?

Suppose there are two orders a and b for a given code change and that
a >7 b. Then our theory predicts that review efficiency and effectiveness for
a is not inferior to that of b. Only for efficiency it also predicts that there are
cases where efficiency is greater, based on the rationale that a better order
might lead to a faster review with the same found defects, or to finding more
defects in the same amount of time. Focusing on efficiency, this leads to the
following null and alternative hypotheses:®

Hj3 <o p>0 reviewEfficiency(a) = reviewEfficiency(b)

Hj3 <o p>.4 reviewEfficiency(a) # reviewEfficiency(b)

5 We had to restrict ourselves to a specific defect type to keep the experiment duration
manageable and the set of defects that could be seeded into the small change was limited.
We know from professional experience that swapping defects occur in practice and they can
have severe consequences. We cannot quantify how prevalent they are, as studies that count
defect types usually use more general categories (like “interface defects”).

6 We use the two-sided formulation for reasons of conservatism, even though the theory’s
prediction is one-sided

Working Memory, Code Ordering and Code Review Performance 11

Table 2 Considered Order Types

1D Origin Ezplanation

OF ‘optimal + files’ a best order (i.e., a maximal element according to >7)
that keeps file boundaries intact

ONF ‘optimal + no files’ a best order (i.e., a maximal element according to >7)
that is allowed to ignore file boundaries

WF ‘worst + files’ a worst order (i.e., a minimal element according to
>7) that keeps file boundaries intact

WNF ‘worst + no files’ a worst order (i.e., a minimal element according to

>7) that is allowed to ignore file boundaries

To study the dependence on working memory capacity, we also test the
sub-sample with less than median working memory capacity. This sub-sample
should be more prone to cognitive overload.

For a given code change of non-trivial size, there is a vast number of possible
permutations and consequently many possible comparisons to perform; we
have to select a subset for our study. As this study is the first to measure the
effect of change part ordering on code review, our choice is exploratory: We
compare one of the best change part orders according to >7 with one of the
worst orders. Usually, such a worst order mixes change parts from different
files. To also include a more realistic comparison, we select one of the best and
one of the worst orders that keep change parts from the same file together. In
the following, these order types will be called as described by column ID in
Table 2.

By construction, it holds that OF >y WF, ONF >y WNF, WF >
WNF and, by transitivity, OF >7 WNF. We consider the first 3 pairs.
When inserted into the above-mentioned hypotheses, they give rise to a total
of 3 combinations of null and alternative hypotheses, each named after the
first order in the pair: H3.oro, Hs.or 4, Hs.ONF.0, - -

3.2 Design

Fig. 1 shows an overview of the phases, participation, and overall flow of
the experiment that we designed to answer our research questions and test
the aforementioned hypotheses. The general structure is that of a partially
counter-balanced repeated measures design (Field and Hole, 2002), augmented
with additional phases. It is ‘repeated measures’ because we measure each
participant in three reviews and use two of these for RQs and two for RQs.
It is ‘partially counter-balanced’ for RQs because we randomize the order
of treatments and patches, but only measure two of the four treatments per
participant. Next, we briefly describe each phase, which we are going to detail
in the rest of this section.

(1) The experiment is entirely done through an instrumented browser-based
tool that allows performing change-based reviews, collecting data from sur-
vey questions and on the interaction during reviews, and other aspects of

12 Tobias Baum et al.

online setting
76 participants
started

company setting
16 participants

started

access to the
controlled software
environment

for the experiment

demographics
& confounders

Welcome
participant!

small| dropout
change (5/76) online
1stlarge [—
change ! dropout
(randomized | (23/76) online
change & (1/16) company
ordering) 3
2nd large 77777 — 5
change dropout
(randomized 3 (13/76) online
change &
ordering)) und
subjective
comparison
& jEdit experience

working

optional @3+122 | memory

memory Y capacity
test

g/ u 8 ¥ R

company online company online
setting setting setting setting
(3/16) (2/76) (12/16) (33/76)

completed without memory test

completed with memory test

Fig. 1 Experiment steps, flow, and participation

Working Memory, Code Ordering and Code Review Performance 13

the experiment. The welcome interface gives the participants information
on the experiment and requires informed consent.

The participant is then shown a questionnaire to collect information on
demographics and some confounding factors: The main role of the par-
ticipant in software development, experience with professional software
development and Java, current practice in programming as well as review-
ing, and two surrogate measures for current mental freshness (i.e., hours
already worked today and a personal assessment of tiredness/fitness on a
Likert scale). These questions loosely correspond to the advice by Falessi
et al. to measure “real, relevant and recent experience” of participants in
software engineering experiments (Falessi et al, 2017).

After providing this information, the participant receives more details on
the tasks and the expectations regarding the reviews. Moreover, the par-
ticipant is shown a brief overview of the relevant parts of the open-source
software (OSS) project from which we sampled the code changes to re-
view.

Each participant is then asked to perform a review on a small change;
afterward the participant has to answer a few understanding questions®
on the code change just reviewed. This phase is needed both for answering
RQ2 and as a warm-up review. As a warm-up, this review is proposed to
mitigate the effects of the novelty of the code base and the review UI in
the next two large reviews.

Next, the participant is asked to perform the first large review, preceded
by a short reminder of the expected outcome (i.e., efficiently finding cor-
rectness defects). The code change in the review is ordered according to the
randomly selected ordering type (see Section 3.4) for answering RQgs. Like
for the small change, the participant has to answer a few understanding
questions after the review.

Subsequently, the participant is asked to repeat the review task and un-
derstanding questions for a second large code change, which was ordered
according to the second sampled ordering type.

After all reviews are finished, the participant is asked for a subjective com-
parison: Which of the two large reviews was understood better? Which
change was perceived as having a more complicated structure? Further-
more, we ask for the participant’s experience with the OSS system from
which we sampled the code changes.

Finally, the participant is asked to perform an optional task of computing
arithmetic operations and recalling letters shown after each arithmetic
operation. This task is an automated operation span test (Unsworth et al,
2005), based on the shortened operation span test by Oswald et al (2015),
which we re-implemented for our browser-based setting. We use this task
to measure the working memory capacity for answering RQ;. The task is

7 All these descriptions could be accessed again on demand by participants during the
review.

8 The full text of these questions is contained in the replication package (Baum et al,
2018).

14 Tobias Baum et al.

optional for two reasons: (1) Working memory capacity as a component
of general intelligence is more sensitive data than most other data we
collect, thus participants should be able to partially opt-out. (2) The test
can be tiring, especially after having completed a series of non-trivial code
reviews.

3.3 Browser-Based Experiment Platform

We created a browser-based experiment environment to support all the aspects
of the experiment, most importantly conducting the reviews, gathering data
from the survey questions, conducting the working memory span test, and
assigning participants to treatment groups. This browser-based environment
allowed us to ease access to professional developers and to control the ensuing
threats to validity. In the next paragraph, we detail the part we devised to
conduct the reviews. To reduce the risk of data loss and corruption, almost no
data processing was done in the Ul server itself. Instead, the participants’ data
was written to file as log records, which were then downloaded and analyzed
offline.

In current industrial practice, browser-based code review tools that present
a code change as a series of two-pane diffs are widely used.” Therefore, we
implemented a similar Ul for our study. Although this setup allows for free
scrolling and searching over the whole code change and thus introduces some
hardly controllable factors into our design, we chose it in favor of more restric-
tive setups because of its higher ecological validity. During code review, the
UI logged various kinds of user interaction in the background, for example,
mouse clicks and pressed keys.

An example of the review Ul can be seen in Fig. 2. The HTML page for
a review starts with a description of the commit. These descriptions were
taken from the original commit messages, slightly adapted for clarity. After
that, a brief description of the UI’s main features was given, followed by the
change parts in the order chosen for the particular review and participant.
The presentation of each change part consisted of a header with the file path
and method name and the two-pane diff view of the change part. The initial
view for a change part showed at most four lines of context below and above
the changed lines, but the user could expand this context to show the whole
method. Further parts of the code base were not available to the participants
(and not needed to notice the defects). Review remarks could be added and
changed by clicking on the margin beneath the code.

3.4 Objects and Measurement

Patches / Code changes. Because it is infeasible to find a code base that
is equally well known to a large number of professional developers, we decided

9 e.g., GitHub pull requests, Gerrit and Atlassian Stash/Bitbucket

Working Memory, Code Ordering and Code Review Performance 15

Commit description .

Allow columns to be rearranged in file system browser

Code changes

Below you find the code changes to review. The old version of the code is on the left, the new version is on the right.

To add a review remark, click on the respective line number. To delete it, click on it again and delete the remark's text. If a defect spans multiple lines, just
mark one of those lines. If similar defects appear multiple times, please mark every occurrence. If you suspect something could be a defect but are not
100% sure, it's better to add a review remark.

At several of the change parts, you can show the whole changed method by clicking on "(Show more context)".

org/experiment/editor/browser/VFSDirectoryEntryTable.java, constructor

org/experiment/editor/browser/VFSDirectoryEntryTable.java, constructor (Show more context)

66 setDefaultRenderer(Entry.class, € setDefaultRenderer(Entry.class,
renderer = new FileCellRenderer()); renderer = new FileCellRenderer());
header = getTableHeader(); : header = getTableHeader();
70 header inghtioved{fatse); H e header . setReorderingAllowed(true);
7 addMouseListener(new MainMouseHandler()); 71 addMouseListener(new MainMouseHandler());
72 header . addMouseListener(new MouseHandler()); 72 header . addMouseListener(new MouseHandler());
7 header . setDefaultRenderer (new HeaderRenderer(73 header . setDefaultRenderer (new HeaderRenderer(
(DefaultTableCellRenderer)header. getDefaultRenderer())); (DefaultTableCellRenderer)header. getDefaultRenderer()));

org/experiment/editor/browser/VFSDirectoryEntryTableModel.java,

org/experiment/editor/browser/VFSDirectoryEntryTableModel.java columnMoved()

275 75 protected void columnMoved(int from, int to) {
7 if (from == to)
return;
if (from < 1 || from >= getColumnCount())
return;
if (to < 1 || to >= getColumnCount())
return;
ExtendedAttribute ea = extAttrs.remove(from - 1);
extAttrs.add(to - 1, ea);

org/experiment/editor/browser/VFSDirectoryEntryTable.java

org/experiment/editor/browser/VFSDirectoryEntryTable.java (Show more context)

574 class ColumnHandler implements TableColumnModellistener 574 class ColumnHandler implements TableColumnModellistener

575 { 575 {

576 public void columnAdded(TableColumnModelEvent e) {} 576 public void columnAdded(TableColumnModelEvent e) {}
public void columnRemoved(TableColumnModelEvent e) {} 5 public void columnRemoved(TableColumnModelEvent e) {}
public void columnMoved(TableColumnModelEvent e) £F 578 public void columnMoved(TableColumnModelEvent e) {
public void columnSelectionChanged(ListSelectionEvent e) 579

s} ((VFsDirectoryEntryTableModel)getModel()).columnMoved(

e.getToIndex(), e.getFromIndex());
58 public void columnMarginChanged(ChangeEvent e)

{

Ji

public void columnSelectionChanged(ListSelectionEvent e)

public void columnMarginChanged(ChangeEvent e)

Fig. 2 Example of the review view in the browser-based experiment UI, showing the small
code change. It contains three defects: In ‘VFSDirectoryEntryTableModel’, the indices in
the check of both ‘from’ and ‘to’ are inconsistent (local defects). Furthermore, the order
of arguments in the call in ‘VFSDirectoryEntryTable.ColumnHandler’ does not match the
order in the method’s definition (delocalized defect). At each defect, there is a review remark
marker (little red square) in the line number margin, i.e., the figure could show the view at
the end of a review that found all defects.

to use one that is probably little known to all participants. This increases the
difficulty of performing the reviews. To keep the task manageable, we ensure
that at least the functional domain and requirements are well known to the
participants and that there is little reliance on special technologies or libraries.
To satisfy these goals, we selected the jEdit programmer’s text editor!? as the
basis from which to select code changes to review, as others have done before

10 http://jedit.sourceforge.net

16 Tobias Baum et al.

Table 3 Code Change Sizes, Complexity, and Number of Correctness Defects (Total Defect
Count as well as Count of Delocalized Defects Only) after Seeding

Code Change Changed Change Presented Cycl. Total Delocalized

Files Parts LOC! Compl.?2 Defects Defects
Small / Warm-up 2 3 31 12 3 1
Large code change A 7 15 490 57 9 2
Large code change B 7 21 233 83 10 3

I presented LOC := Lines Of Code visible to the participant on the right (=new) side of
the two-pane diffs without expanding the visible context

2 total cyclomatic complexity (McCabe, 1976) of the methods on the right (=new) side of
the two-pane diffs

us (Rothlisberger et al, 2012). To select suitable code changes, we screened
the commits to jEdit from the years 2010 to 2017. We programmatically se-
lected changes with a file count similar to the median size of commercial code
reviews identified in previous work (Barnett et al, 2015; Baum et al, 2017b).
The resulting subset was then checked manually for changes that are (1) self-
contained, (2) neither too complicated nor too trivial, and (3) of a minimum
quality, especially not containing dubious changes/ “hacks”.

With that procedure, we manually checked 10 commits for the large re-
views and excluded 2 as not self-contained, 1 as too complicated, 2 as too
simple and 3 as dubious. The selected commits are those of revision 19705
(‘code change A’ in the following) and of revision 19386 (‘code change B’).
In addition, we selected a smaller commit (revision 23970) for the warm-up
task. For this choice, a large number of commits satisfied our criteria, so the
sampling was less exhaustive. Code change A is a refactoring, changing the
implementation of various file system tasks from an old API for background
tasks to a new one. Code change B is a feature enhancement, allowing the com-
bination of the search for whole words and the search by regular expressions in
the editor’s search feature. The small change is also a feature enhancement, al-
lowing columns to be rearranged in the editor’s file system browser Ul. Details
on the sizes of the code changes can be found in Table 3. Mainly because it
contained a lot of code moves, code change A contains fewer change parts but
more lines of code than code change B, but code change B is algorithmically
more complex.

There was a risk that some participants would ignore our instructions and
look for further information about jEdit (e.g., bug reports) on the internet
while performing the experiment. To reduce that risk we removed all men-
tions of jEdit and its contributors from the code changes presented to the
participants and only gave credit to jEdit after the end of all reviews. We also
normalized some irrelevant, systematic parts of the changes (automatically
added @Override annotations, white space) and added some line breaks to
avoid horizontal scrolling during the reviews, but otherwise left the original
changes unchanged.

Working Memory, Code Ordering and Code Review Performance 17

Seeding of Defects. Code review is usually employed by software devel-
opment teams to reach a combination of different goals (Bacchelli and Bird,
2013; Baum et al, 2016b). Of these goals, the detection of faults (correct-
ness defects; (IEEE 24765, 2010)), improvement of code quality (finding of
maintainability issues), and spreading of knowledge are often among the most
important ones. As the definition of maintainability is fuzzy and less consen-
sual than that of a correctness defect, we restrict our analysis to correctness
defects. In its original form, code change A contained one correctness defect
and code change B contained two. To gain richer data for analysis, we seeded
several further defects, so that the small code change contains a total of 3
defects, code change A contains 9 defects, and code change B contains 10. The
seeded defects are a mixture of various realistic defect types. There are rather
simple ones (e.g., misspelled messages and forgetting a boundary check), but
also hard ones (e.g., a potential stall of multithreaded code and a forgotten
adjustment of a variable in a complex algorithm). We regard 6 of these defects
as delocalized (Dunsmore et al, 2000), i.e., their detection is likely based on
combining knowledge of different parts of the code. The first and last authors
independently classified defects as (de)localized and contrasted results after-
ward. Both types of defects can be seen in Fig. 2: The parameter swap in
the call of ‘columnMoved’ is a delocalized defect because both the second and
third change part have to be combined to find it. The off-by-one errors in the
if conditions in the second change part are not delocalized because they can
be spotted by only looking at that change part.

The full code changes and the seeded defects can be found in the study’s
replication package (Baum et al, 2018).

Measurement of Defects. We explicitly asked the participants to review
only for correctness defects. All review remarks were manually coded by one
of the authors, taking into account the position of the remark as well as its
text. A remark could be classified as (1) identifying a certain defect, (2) ‘not
a correctness defect’, or (3) occasionally also as relating to several defects. In
edge cases, we decided to count a remark if it was in the right position and
could make a hypothetical author aware of his defect. It was not counted if it
was in the right position but unrelated to the defect (e.g., it is related only to
a minor issue of style). If this procedure led to several remarks for the same
defect for a participant, it was only counted once. To check the reliability of
the coding, a second researcher coded a sample of 56 of the remarks again. In
13 of these cases, it was discussed whether the remark should be counted as a
defect or not. In all cases, it was agreed that the original coding was correct.
The detailed coding of all review remarks can be seen in the study’s online
material (Baum et al, 2018).

Code order. When designing an experiment on code reviews, one has to
account for large variations in the review performance between participants.
Therefore, counterbalanced repeated-measures designs are common (as argued,
for example, by Laitenberger (2000)). To gain maximum information from our
experiment, it would be desirable to gather data for each of the four types of

18 Tobias Baum et al.

orders from each participant. But this is infeasible due to the large amount of
participants’ time and effort needed for each review. Therefore, we decided to
restrict ourselves to pairs of change part order types, specifically, those pairs
needed for checking the predictions for RQs: ONF vs WNF, OF vs WF and
WF vs WNF. Each participant is shown a different change in each review. For
each pair of order type, we use a fully counter-balanced design. Consequently,
there are four groups per pair, differing in the orders of change part order type
and of code change.

To determine the four different orders (ONF, OF, WNF, WF) for each of
the two code changes, we first split the code changes into change parts. We
mainly split along method boundaries, i.e., if several parts of the same method
were changed, the method was kept intact and regarded as a single change part.
If a whole class was added, it was kept intact. After that, we determined the
relations between the change parts. We checked for the following subset of
the relation types given by Baum et al (2017¢): (1) Similarity (moved code or
Jaccard similarity (Jaccard, 1912) of used tokens > 0.7), (2) declare & use,
(3) class hierarchy, (4) call flow, and (5) file order. We extracted the relations
manually, except for Jaccard similarity which we determined with a program.
Our previous work did not specify which relation types should be regarded
as more important than others. To determine a concrete order, we had to
assume a certain priority and used the order just given (i.e., similarity as most
important; file order as least important). To construct the OF and WF orders,
an additional relation type ‘in same file’ was added as the top priority. To
find the orders based on the relations, we implemented the partial order >7 in
software!! and semi-automatically constructed minimal and maximal elements
of this partial order relation. The implementation automatically determines
optimal elements when provided with a list of relations. The worst elements
instead were created by iterating between automatic checking and manual re-
ordering. The source code with details for the used relations can be found in
the online material (Baum et al, 2018).

Time. One of our main variables of interest is review efficiency, measured
as the ratio of found defects and needed time. It is generally believed that
there is a trade-off between speed and quality in reviews (Gilb and Graham,
1993), which lets many researchers control for time by fixing it to a certain
amount. This would run contrary to one of our main research goals, i.e., finding
differences in efficiency. Therefore, we chose to let participants review as long
as they deem it necessary and measure the total time. A participant who
needed to interrupt the review could press a ‘pause’ button; 14 participants
did so at least once. We measure gross time (including pauses) and net time
(without pauses).

Working Memory. As described above, working memory capacity can be
measured with complex span tests (Daneman and Carpenter, 1980) that con-
sist of interleaved time-limited recall and cognitive processing tasks. Our im-
plementation of the shortened automated operation span test (Unsworth et al,

1 available as part of CoRT: https://github.com/tobiasbaum /reviewtool

Working Memory, Code Ordering and Code Review Performance 19

Table 4 The Variables Collected and Investigated for this Study.

Independent variables (design):

Working memory span score (measured) ordinal/interval
Used change part order type (controlled) nominal

Used code change (controlled) dichotomous
First or second large review (controlled) dichotomous
Independent variables (measured confounders):

Professional development experience ordinal/interval
Java experience ordinal/interval
Current programming practice ordinal/interval
Current code review practice ordinal/interval
Working hours before experiment (surrogate for tiredness) ratio

Perceived fitness before experiment ordinal
Experience with jEdit ordinal

Screen height ratio
Controlled setting (i.e., lab instead of online) dichotomous
Dependent variables per review:

Needed gross review time ratio

Needed net review time (i.e., without pauses) ratio

Number of detected defects ratio

Number of detected delocalized defects ratio

Number of correctly answered understanding questions ratio

2005; Oswald et al, 2015) consists of two tasks each with 3 to 7 random let-
ters. Each letter is shown for a brief amount of time, and the letter sequence
has to be remembered while solving simple arithmetic tasks after each letter
(see the online material for more details (Baum et al, 2018)). Each correctly
remembered letter gives one point, so the maximum score is 50. The theoret-
ical minimum is zero, but this is unlikely for our population. Rescaling the
results from Oswald et al (2015) gives an expected mean score of 38.2. Before
the main tasks, there were some tasks for calibration and getting used to the
test’s UL

3.5 Data Analysis

We employ various statistical procedures and tests to answer our research
questions.

For RQ1, we look for correlation between working memory span scores and
found defect counts using Kendall’s 75 correlation coefficient (Agresti, 2010).
We chose 75 because it does not require normality and can cope with ties,
which are likely for counts. In line with the hypotheses for this RQ, we test the
total number of found defects as well as the total number of found delocalized
defects. To augment and triangulate our results, we also build a regression
model to predict the number of found (delocalized) defects. The independent
variables are chosen by stepwise selection (stepwise BIC (Venables and Ripley,
2002)) from the variables listed in Table 4.

For RQ2, we have simple count data (defect found in the small review,
defect found in the large review) that leads to 2x2 contingency tables. As the

20 Tobias Baum et al.

observations are dependent (several per participant), we use McNemar’s exact
test (Agresti, 2007).

We performed power analysis for RQ3, because we expected a smaller effect
for it and we had more groups compared to the other RQs. We used Monte
Carlo power analysis: We implemented a simple simulation model for the ex-
periment'?, estimated effect sizes and some parameters and performed ran-
domized simulation runs with and without a simulated effect. Based on 1000
simulated experiments per run, we estimated false positive and false negative
rates. Among the analyzed variants were different choices for the treatment
groups, different statistical tests and different sample sizes. We settled for
the incomplete repeated-measures design described so far. To deal with this
design and allow for potentially imbalanced groups and several confounding
factors, we planned to use linear mixed effect (lme) regression models (Bates
et al, 2014) and determine confidence intervals for the coefficients using pa-
rameterized bootstrap. The dependent variable is review efficiency (‘Number
of detected defects’ / ‘Needed net review time’), independent variables are
‘used change part order type’ and ‘first or second large review’ (fixed effects)
and ‘used code change’ and participant ID (random effects). Using further of
the measured confounders in the model is not beneficial here as they are sub-
sumed in the random effect per participant. It turned out that some of our
assumptions in the simulation were wrong, most notably that we did not take
drop-outs into account. Also, the empirical data does not satisfy all assump-
tions needed for Ime models.'® A non-parametric alternative with a minimal
set of assumptions is the Wilcoxon signed-rank test, but it is also problematic
due to imbalanced groups after removal of drop-outs. Therefore, we will present
both results to the reader. The R code of all analyses is available (Baum et al,
2018). We will analyze the full set of all participants as well as the subset of
participants with lower than median working memory capacity, but we will
not test the difference formally.

Whether and how to correct for alpha errors when testing several hypothe-
ses is disputed in some research communities (e.g., Perneger (1998)). We de-
cided to perform Bonferroni-Holm correction within research questions and no
correction spanning several research questions, i.e., each research question is
treated on its own. Therefore, the probability of a type I error should be at the
nominal 5% for each research question; the error probability for the paper as
a whole is larger. When we give confidence intervals, those are 95% intervals.

3.6 Participants

The power analysis for RQ3 indicated a need for at least 60 participants with
the originally planned pooled Ime analysis. Furthermore, to see an effect of

12 «generateTestData.r” and “SimulateExperiment.java” in the replication package (Baum

et al, 2018)
13 for further discussion, see ‘Statistical Conclusion Validity’ in Section 5.1

Working Memory, Code Ordering and Code Review Performance 21

change part order, we needed code changes larger than a minimum size. Com-
bined, this meant that it is infeasible to use a code base that is well known
to all participants and that inexperienced participants (e.g., students) would
be overwhelmed by the task. Our choice of an online, browser-based setting
helped to increase the chance of reaching a high number of professional soft-
ware developers. Because this meant less control over the experimental setting,
the experiment contains questions to characterize the participants:

Their role in software development,

— their experience with professional software development,
their experience with Java,

— how often they practice code reviews, and

how often they program.

The experiment Ul was made available online in 2017 for six weeks. Similar
to canary releasing (Humble and Farley, 2011), we initially invited a small
number of people and kept a keen eye on potential problems, before gradually
moving out to larger groups of people. To contact participants, we used the au-
thors’ personal and professional networks and spread the invitation widely over
mailing lists, Twitter, Xing, Meetup and advertised on Bing. We convinced the
complete development team of a collaborating software development company
to participate in the experiment. This subsample of 16 developers performed
the experiment in a more controlled setting, one at a time in a quiet room
with standardized hardware. This subpopulation allowed us to detect varia-
tions between online setting and a more controlled environment that can hint
at problems with the former.

A consequence of our sampling method is that we could not assign partici-
pants to groups in bulk before the experiment, but had to assign them with an
online algorithm. To perform the assignment, we used a combination of bal-
ancing over treatment groups, minimization based on the number of defects
found in the small change review (Point 3 in Fig. 1) and randomization.

As the mean duration turned out to be about one and a half hours, with
some participants taking more than two hours, we decided to offer financial
compensation. We did this in form of a lottery (Singer and Ye, 2013; Laguilles
et al, 2011), offering three cash prizes of EUR 200 each. The winners were
selected by chance among the participants with a better than median total
review efficiency so that there was a mild incentive to strive for good review
results.

A total of 50 participants finished all three reviews (of 92 who submitted
at least the warm-up review). 45 chose to also take the working memory span
test. Unless otherwise noted, participants who did not complete all reviews
will not be taken into account in further analyses. We regard participants who
spent less than 5 minutes on a review and entered no review remark as ‘did
not finish’. We also excluded one participant who restarted the experiment
after having finished it partly in a previous session. 24 participants dropped
out during the first large review, 13 during the second large review.

22 Tobias Baum et al.

o _
—
-
5
o
3 _
OH
-
C
©
2
Q
=
a
o Y
o

no lyear 2yrs 3-5 6-10 more

Fig. 3 Professional development experience of the 50 participants that finished all reviews.
Darker shade indicates company setting, lighter shade is pure online setting.

42 participants named ‘software developer’ as their main role. 4 are re-
searchers and the remaining participants identified as managers, software ar-
chitects or analysts. 47 of the participants program and 32 review at least
weekly. 40 have at least three years of experience in professional software devel-
opment, only 1 has none. Fig. 3 shows the detailed distribution of experience.
None of the participants ever contributed to jEdit.

The minimum observed working memory span score is 17, the maximum is
50, the median is 45 and the mean is 41.93 (sd=7.05). The mean in our sample
is about 3.7 points higher than estimated based on the sample of Oswald et al
(2015) (from a different population), and there seems to be a slight ceiling
effect that we will discuss in the threats to validity.

4 Results

In this section, we present our empirical results and the statistical tests per-
formed. Before that, we briefly describe general results on the participant’s
performance and a brief analysis of their qualitative remarks. The complete
dataset is available (Baum et al, 2018).

Table 5 shows the mean number of defects found and the mean review
time depending on the reviewed code change and also depending on the re-
view number (i.e., small review, first large review or second large review).
This preliminary analysis indicates a large ordering/fatigue effect, particu-
larly striking for the drop in review time between the first and second large
review. We discuss this ordering effect in Section 5.1. Comparing the company
and the online setting, the mean review effectiveness in the company is higher
than online, whereas the efficiency is slightly smaller (see Table 6).

Working Memory, Code Ordering and Code Review Performance 23

Table 5 Mean and Standard Deviation (sd) for the Number of Defects Found (All Defects
as well as the Subset of Delocalized Defects Only) and Review Time, Depending on Review
Number and Code Change

All Defects Delocalized Defects ~ Time (Minutes)

Small / Warm-up 1.76 (of 3), sd=1.13 0.76 (of 1), sd=0.43 8.49, sd=5.48
First large review 3.68, sd=2.12 0.66, sd=0.82 30.03, sd=16.41
Second large review 2.98, sd=2.16 0.68, sd=0.87 20.69, sd=17.32

Large code change A 3.16 (of 9), sd=2.09 0.7 (of 2), sd=0.86 23.85, sd=16.96
Large code change B 3.5 (of 10), sd=2.23 0.64 (of 3), sd=0.83 26.88, sd=17.93

Table 6 Mean Review Efficiency and Effectiveness for the Two Levels of Control in the
Study (Online or Company Setting)

Controlled Setting Effectiveness Efficiency
Yes (Company) 43% 8.8 defects/hour
No (Online) 36% 10.4 defects/hour

We analyzed the participant’s full-text answers for potential problems with
the experiment. Most comments in this regard revolved around some of the
compromises we settled for in the design of the experiment: Little review
support in the web browser (e.g., “For more complex code as in review 2
or three a development IDE would support the reviewer better than a website
can do” pc11 '), mentally demanding and time-consuming tasks (e.g., “I found
the last exercises complicated.” poss), and the high number of seeded defects
(e.g., “I am rarely exposed to code that bad” pp44). There were also a number
of positive comments (e.g., “It was quite fun, thanks!” po37).

We also scanned the participants’ scrolling and Ul interaction patterns.
These patterns indicate that some participants made intensive use of the
browser’s search mechanism, whereas others scrolled through the code more
linearly. The detailed patterns are available with the rest of the experiment
results (Baum et al, 2018).

4.1 RQ;: Working Memory and Defects Found

In RQ; we ask: “Is the reviewer’s working memory capacity associated with
code review effectiveness?” As motivated in Section 3.1, we analyze all defects
as well as delocalized defects. We use Kendall’s 7 rank correlation coefficient
(one-sided) to check whether a positive correlation exists. For all defects, 75 is
0.05 (n=45, p=0.3143). Looking only at the correlation between the number
of delocalized defects found and working memory span, 75 is 0.24 (p=0.0186);
inversely it is almost zero (-0.01) for localized defects. Using an alpha value of
5% and applying the Bonferroni-Holm procedure for alpha error correction, we
can reject the null hypothesis Hy 2 ¢ for delocalized defects, yet with a rather

14 The subscripts next to the citations are participant IDs, with POn from the online
setting and PCn from the more controlled company setting.

24 Tobias Baum et al.

- 1571 154 N
5
8 2 4
%) 3 A A
S £ A N
4] [%)
%5 101 5 101 A
° Q2 20 0A A
o [} A A A A
.g E A M A
E o 2 A A A A
O 51 000 o S 51 N N
% o ° 000 < A A
= ° o 008 © o ° A %N A A A
m -
35 o o ° oo o I+ A DA
= ° ° o 08 0%o A
* 04 e 0% 0o © 9 o 0
20 30 40 50 20 30 40 50
working memory span test score working memory span test score

Fig. 4 Scatter Plots of Working Memory Span and Number of Delocalized (Left Plot) and
Other (i.e., Localized; Right Plot) Defects Detected; Slight jitter added

small Kendall correlation. We cannot reject the null hypothesis Hy 1 for all
defects.

Looking at the scatter plot in Fig. 4 helps to clarify the nature of the rela-
tion: The plot suggests that a high working memory span score is a necessary
but not a sufficient condition for high detection effectiveness for delocalized
defects. In other words, a higher working memory capacity seems to increase
the chances of finding delocalized defects, but it does not guarantee it and
other mediating or moderating factors must be present. It may seem that the
leftmost data point is a very influential outlier and its exclusion would indeed
reduce statistical significance; however, systematic analysis of influential data
points showed that it is not the most influential one. We scrutinized the three
most influential participants both for and against the hypothesis, checking
the time taken, found defects, answers to understanding questions and other
measures. Based on these in-depth checks, we decided to stick to the formal ex-
clusion criteria described in Section 3.6 and keep all included data points. If we
were to exclude one influential data point, it would be participant PO15, who
spent little time on the reviews; this exclusion would strengthen the statistical
significance.

To check the other influencing factors, we used stepwise BIC (Bayesian
Information Criterion) (Venables and Ripley, 2002) to fit a regression model.
Additionally, we determined the correlation between all factors and the de-
fect counts (see Table 9). The only effect strong enough for inclusion in the
regression model for all defects was review time, with longer reviewing time
leading to more defects found (see Table 7). Looking at the correlations for the
remaining factors in Table 9, professional development experience and review
practice also seem to be positively correlated with the total number of defects
found, as is the experimental setting. Review practice and experimental set-
ting can also be found in the regression model for delocalized defects (Table 8).

Working Memory, Code Ordering and Code Review Performance

25

Table 7 Results of Fitting a Linear Regression Model for the Number of All Found Defects
Using Stepwise BIC. Coefficient for time is based on measuring in minutes.

Coefficients Model statistics
Intercept Net time for reviews R? adj. R?2 BIC
4.7803 0.0682 0.2768 0.2599 258.61

Table 8 Results of Fitting a Linear Regression Model for the Number of all Found Delo-
calized Defects Using Stepwise BIC. Coefficient for time is based on measuring in minutes.

Coeflicients Model statistics
Net time Working Current
Intercept for memory review Con.trolled R? adj. R? BIC
. . setting
reviews span score practice
-3.6914 0.0215 0.0865 0.2717 0.8478 0.5359 0.4895 162.54

Table 9 Kendall 7 correlation for all variable combinations. The names are replaced by
single letter IDs for space reasons: a := Working memory span score, b := Total number
of detected defects, ¢ := Total number of detected delocalized defects, d := Total number

of detected localized (=other) defects, e := Net time for reviews, f := Controlled setting,
g := Professional development experience, h := Current code review practice, i := Screen
height, j := Current programming practice, k := Java experience, 1 := Code change B in
first large review, m := Working hours before experiment, n := Perceived fitness before
experiment
b c d e f g h i j k 1 m n
a 0.05 0.24 -0.01 0.07 —0.18 0.04 —0.01 0.13 —0.19 0.22 —0.04 —0.2 0.23
b 0.64 088 0.35 0.28 0.24 0.2 021 0.07 0.04 —0.05 —0.08 —0.08
c 045 044 0.3 0.24 031 022 0.1 0.07-0.01 —0.07 0.11
d 0.28 0.2 021 0.13 0.2 0.03 0.02-0.06 -0.08 —0.12
e 0.21 0.15 0.13 0.09 —0.07 0.01 —0.12 —0.06 —0.09
f 0.02 0.28 0.3 0.13-0.07 0.01 0.25 0.02
g 0.14 0.04 024 0.5 0.17 —0.05 —0.05
h 0.05 0.47 —0.02 0.03 0.07 —0.04
i 0 0.05 —0.06 —0.05 0.08
j 0.09 0.07 —0.04 —0.19
k 0.05 —0.15 —0.05
1 —-0.09 0.07
m —0.13

The other factors, e.g., subjective mental fitness/tiredness, are neither highly
correlated nor did they make it into one of the regression models.

RQ;: Working memory capacity is positively correlated with the effective-
ness of finding delocalized defects. Not delocalized defects are influenced
to a much lesser degree, if at all. Even for delocalized defects, working
memory capacity is only one of several factors, of which the strongest is

review time.

26 Tobias Baum et al.

Table 10 Count of reviews in which the respective defects were detected, p-value from one-
sided McNemar’s test for RQ2 and corresponding effect size measured as Cohen’s g (Cohen,
1977) (classification as ‘large’ also according to Cohen (1977))

Defect found in review

Hypothesis small large both none p Cohen’s g
only only

HZSI.first large review.0 10 0 9 6 0.001 0.5 (large)

HQASQAfirst large review.0 11 0 8 6 0.0005 0.5 (large)

H3 51 .second large review.0 10 1 9 5 0.0059 0.41 (large)

H2.52Asecond large review.0 12 1 7 5 0.0017 0.42 (1arge)

4.2 RQs: Code Change Size and Defects Found

In RQ2 we ask: “Does higher mental load in the form of larger, more complex
code changes lead to lower code review effectiveness?” It could already be seen
in Table 5 that the reviewers performed better in the small review than in the
larger reviews. More specifically, the mean review effectiveness is 59% for the
small reviews and 35% for the large reviews. The mean review efficiency is
15.65 defects/hour for the small review and 9.47 defects/hour for the large
reviews. These numbers depend to a large degree on the seeded defects. For a
fair comparison, we picked (as described in Section 3.1) a specific defect type
to compare in detail: The swapping of arguments in a method call. The small
code change contained one defect of this type and code change A contained
two such defects (S1 and S2 in the following). The defect has been found in the
small reviews in 38 of 50 occasions (detection probability: 76%). When code
change A was the first large review, S1 has been found 9 of 25 times (detection
probability: 36%). The detailed numbers for all four situations can be seen in
Table 10. The corresponding tests for association are all highly statistically
significant (the smallest threshold, after applying Bonferroni-Holm correction,
is 0.05/4=0.0125; the largest p-value is 0.0059). Therefore, we can reject all
four null hypotheses Hs <4~ .<n>.0 and conclude that the probability of finding
‘swap type’ defects is smaller for larger, more complex code changes. In all four
situations, the effect size is large. There is only a small difference in effect size
between the first and second large review, i.e., if there is a fatigue or other
ordering effect it does not play a major role.

Part of the hypothesis underlying RQ2 is that the lower performance is
due to increased mental load. This increase should have a larger effect for
the participants with lower working memory span score, so we would expect
a higher drop in detection effectiveness for them. We checked for such an
effect, but it is far from statistically significant. All in all, we cannot reliably
conclude whether the lower effectiveness is due to cognitive overload in spite
of high mental effort or to a decision to invest less mental effort than needed
(e.g., caused by lower motivation).

Working Memory, Code Ordering and Code Review Performance 27

RQs: Larger, more complex code changes are associated with lower code
review effectiveness. This may be caused by higher mental load or by other
reasons, such as faster review rates or lower motivation.

4.3 RQ3: Code Order and Review Efficiency

In RQs we ask: “Can the order of presenting code change parts to the reviewer
influence code review efficiency, and does this depend on working memory
capacity?”

Due to the online assignment of participants to groups and due to data
cleansing, the number of participants per group is not fully balanced, especially
in the WF-WNF group. Table 11 shows the distribution. There are also signs
that the review skill is not equally distributed among the three groups: The
mean efficiencies in the small, warm-up review are 13.9 (OF-WF), 17.23 (ONF-
WNF), and 15.88 defects/hour (WF-WNF).

Fig. 5 shows box plots with efficiency for the different change part orders
for each of the treatment groups. The difference in medians is in the direction
predicted by theory, but subject to a lot of variation (Table 12 shows the exact
numbers). As mentioned in Section 3.5, we originally planned to analyze the
full data with a linear mixed effect model (Bates et al, 2014). Such a model can
take the slightly unbalanced and incomplete nature of our data into account,
but its preconditions (independence, homoscedasticity, normality of residuals)
were not fully satisfied. To ensure independence, we analyze each treatment
group separately instead of pooling them. Regarding the other preconditions,
we also analyze the data with a Wilcoxon signed-rank test, acknowledging that
it is more prone to bias due to ordering and/or different code changes. With
neither analysis, there is an effect that is statistically significant at the 5%
level (especially after taking alpha error correction into account). Looking at
the tendencies in the data, there seems to be a medium-sized positive effect of
the OF order compared to WF. For ONF vs WNF instead, there is a conflict

Table 11 Number of Participants by Treatment Groups, with Details for Order of Treat-
ment and Order of Code Change. Only the first large review is given for each group, the
second review is the respective other value (e.g., in the OF-WF group, when WF+Change
A was reviewed first by a participant, OF+Change B was second).

OF-WF ONF-WNF WF-WNF
OF WF total ONF WNF total WF WNF total
first first first first first first
Change A first 5 6 11 5 4 9 3 2 5
Change B first 3 4 7 4 5 9 4 5 9
total 8 10 18 9 9 18 7 7 141

I The slightly lower number for the WF-WNF combinations is intended, the balancing
algorithm slightly favored the other two treatment combinations.

28 Tobias Baum et al.

o | o | o
™ o ™
& 8 g4 ——
'
'
g R —_ 8] 8 ! -
kol ' ' —_ ' .
S 1 | 1 ' w] ' o _] ! "
E = ' 1 — ' T —
'
o | ' o | | o |
— — —
o - 0 - T 0 - H |
— T i — —— _
o - _ o - _ o -
T T T T T T
OF WF ONF WNF WF WNF
< < p— S
— — K —
'
@ | o | | o |
o —_—T o l -t o '
' '
" . ! ! : —_
s < ' _ © | ! ' o | ' '
c O ! =] ! =] L '
g ! ! ! -
2 ! '
3 = | < <
5 © =] (<]
N] N] N
<] =] T <] K
—_— —_—
o | . o o |
=) [S) [S)
T T T T T T
OF WF ONF WNF WF WNF
(= o | o _|
@ @ @D
o 9 o | o _|
£ © © : ©
= '
.5 =] =) . ! o
3 v _:_ : < ' < 7 —_—
4 ! '
'
7 7 O_E
'
'
—_—t 0 —_— —_—
o - o - o -
T T T T T T
OF WF ONF WNF WF WNF

Fig. 5 Box plots for review efficiency (in defects/hour), effectiveness (found defects/total
defects), and review time (in minutes) for the three treatment groups. In each plot, the left
treatment is the theoretically better one.

in the direction of the effect between mean and median. As expected, the dif-
ference between WF and WNF is small. The theory suggests that the positive
effect of a better ordering should be larger for participants with lesser work-
ing memory capacity. Except for the ONF-WNF sub-sample, the tendencies
for the respective sub-samples in Table 12 support that prediction, but the
sub-samples are too small to draw meaningful statistical conclusions.

For the percentage of understanding questions answered correctly at the
end of the reviews, the results are weaker but otherwise similar: Largely com-
patible tendencies but statistically non-significant results, with the strongest
effect for the OF-WF condition. Mean correctness in detail: OF-WF 67.1% vs
56.5%, ONF-WNF 60.6% vs 64.8%, WF-WNF 63.1% vs 60.1%.

Part of the hypothesis underlying RQgs is that a better order means less
mental load. To roughly assess mental load, we asked participants to rate

Working Memory, Code Ordering and Code Review Performance 29

Table 12 Comparison of efficiency (in defects/hour) for the different change part orders;
overall, for each treatment combination and for the subsamples with below median working
memory capacity. Caution has to be applied when interpreting the results of Imer as not all
assumptions are met. Due to the small samples, we left out lmer models for low wm span
and their intervals are inaccurate. Every row from the upper part is continued in the lower

part. ‘conf.int.” = ‘confidence interval’, ‘sd’ = ‘standard deviation’, ‘negl.” = ‘negligible’

theoretically better treatment theoretically worse treatment
group n median (conf.int.) mean (sd) median (conf.int.) mean (sd)
all 50 101 (7.1..11.4) 9.9 (6.2) 7.0 (5.8 ..9.3) 9.1 (7.0)
low wm span 22 11.9 (6.5 .. 13.4) 11.2 (5.9) 7.2 (5.3 ..9.6) 9.8 (8.2)
OF-WF 18 8.7 (55 ..13.0) 9.1 (4.7) 55(2.3..81) 6.3 (5.0)
OF-WF, low 11 10.1 (3.9 .. 13.4) 10.2 (5.1) 5.3 (0.0 .. 8.1) 5.8 (5.4)
ONF-WNF 18 9.4 (4.1 .. 10.8) 9.4 (7.8) 7.0 (5.8..9.1) 9.8 (7.8)
ONF-WNF, low 6 8.6 (0.0 .. 12.4) 8.7 (5.9) 7.2(6.3..9.5) 11.0 (8.9)
WF-WNF 14 119 (5.6 ..14.8) 114 (5.8) 12.1 (5.5 .. 14.7) 118 (7.4)
WF-WNF, low 5 157 (114 ..253) 164 (5.3) 155 (6.0 ..29.7) 17.0 (8.7)

comparison
group relative p Cliff’s § Imer coefficient
difference (Wilcoxon) (conf. int.)?
of medians

all 44% 0.2587 0.14 (negl.)
low wm span 67% 0.2479 0.22 (small)
OF-WF 59% 0.1084 0.35 (medium) 2.66 (-0.66 .. 5.45)
OF-WF, low 91% 0.0537 0.52 (large) -
ONF-WNF 35% 1.0000 0.07 (negl.) -0.36 (-2.63 .. 2.04)
ONF-WNF, low 21% 0.5625 0 (negl.) -
WF-WNF -2% 0.6698 0.02 (negl.) -0.38 (-3.56 .. 3.15)
WF-WNF, low 1% 0.6250 -0.04 (negl.) -

1 Goodness of fit for the Imer models (Barton, 2018): OF-WF R2, = 0.11, R? = 0.17;
ONF-WNF R2, = 0.01, R2 = 0.81; WF-WNF R2 = 0.03, R2 = 0.51

which of the large changes was subjectively more complicated. In line with
our hypothesis, a majority of the participants rated the worse order as more
complicated (answer as expected: 26 participants, no difference: 11, inverse:
13). Interestingly, this difference does not carry through to subjective differ-
ences in understanding (as expected: 22, no difference: 10, inverse: 18). When
justifying their choice when comparing the two large reviews for complexity
and understanding, many participants gave reasons based on properties of the
code changes (e.g., “The change in the second review contained a more be-
havioral change whereas the change in the third review involved a more struc-
tural change” pcs). But many of their explanations can also be attributed to
the different change part orders, e.g.: “Changes in the same files were dis-
tributed across changes at various positions” poy, “the [theoretically worse
review| involved moving of much code which was hard to track” poq, “there
were jumps between algorithm and implementation parts for the [theoretically
worse review]” pog, “in the [theoretically worse] review changes within one file
were not presented in the order in which they appear in the file.” po11, “The

30 Tobias Baum et al.

[theoretically worse review]| was pure code chaos. [The theoretically better one]
was at least a bit more ordered.” pcg or plainly “very confusing” pce.

The theory proposed by Baum et al. (Baum et al, 2017b) contains addi-
tional hypotheses that a better change part order will not lead to worse review
efficiency or effectiveness. As the examination of the box plots in Fig. 5 and
the confidence intervals in Table 12 gives little reason to expect statistically
significant support or rejection, we do not perform formal non-inferiority tests.

RQs: Strong statistically significant conclusions cannot be drawn. If an
effect of better change part ordering on review efficiency exists, its strength
is highly dependent on the respective orders.

5 Discussion

We now review the validity of our design and the limitations that emerged.
We also discuss our main findings and their implications for further studies
and tools, and the lessons that we have learned while conducting this study.

5.1 Validity and Limitations

External Validity. A setup similar to code review tools in industrial practice,
code changes from a real-world software system, and mainly professional soft-
ware developers as participants strengthen the external validity of our study.
There is a risk of the participants not being as motivated as they are in real
code reviews, which we tried to counter by making code review efficiency
part of the precondition to winning the cash prize. External validity is mainly
hampered by four compromises: (1) Usually, code reviews are performed for
a known code-base. (2) Unlike in industry, discussion with other reviewers or
the author was not possible in the reviews. (3) The defect density in the in-
dustry is usually lower than in our code changes. (4) We asked participants to
focus on correctness defects, although identification of maintainability defects
is normally an important aspect of code review (Mantyla and Lassenius, 2009;
Thongtanunam et al, 2015a). This could pose a threat to external validity if
the mechanisms for finding other types of defects are notably different. We
believe this is not the case, as there are delocalized design/maintenance issues
with a need for deeper code understanding as well, but this claim has to be
checked in future research. It would also be worthwhile to study whether and
to what extent the high defect density often used in code review experiments
is a problem.

Construct Validity. To avoid problems with the experimental materials, we
employed a multi-stage process: After tests among the authors, we performed
three pre-tests with one external participant each, afterward we started the
canary release phase.

Working Memory, Code Ordering and Code Review Performance 31

Many of the constructs we use are defined in previous publications and we
reuse existing instruments as much as possible, e.g., the automated operation
span test and many of the questions to assess the participants’ experience
and practice. We did not formally check whether our implementation of the
operation span test measures the same construct as other implementations, but
this threat is mitigated since far more diverse tests have been shown to measure
essentially the same construct (Wilhelm et al, 2013). Compared to working
memory, the mental load construct is less well defined and usually assessed
using subjective rankings. For RQs, we use a simple subjective ranking; for
RQ> we assert that code changes which are an order of magnitude larger will
correspond to higher mental load, without measuring it explicitly. Therefore,
we can assess mental load only qualitatively and not quantitatively in the
current article.

One of the central measures in our study is the number of defects found,
which we restricted to correctness defects to avoid problems with fuzzy con-
struct definitions. To reduce the risk of overlooking defects that a participant
has spotted, we asked participants to favor mentioning an issue when they
are not fully sure if it really is a defect. We regard this advice as compatible
with good practices in industrial review settings (Gilb and Graham, 1993).
The defects were seeded by the first author, based on his 11-years experience
in professional software development and checked for realism by another. Still,
we cannot rule out implicit bias in seeding the defects as well as in select-
ing the code changes. In our study, a defect is either considered delocalized
or not, which ignores that the distance between the delocalized parts differs
depending on the defect and change part order. This could increase noise in
the data.

We advertised our experiment worldwide. Nonetheless, we made our ex-
perimental materials available in English only. We deem this acceptable as
English reading skills are common among software developers and large parts
of the experiment consisted of reading source code and not text. We accepted
review remarks given in other languages.

Another of the central measures is the time taken for a review. By having
a ‘pause’ button and measuring time with and without pauses, we allowed
participants to measure time more accurately, but we cannot assure that all
participants used this button as intended. A risk when measuring time is that
the total time allotted for the experiment, which was known to the partici-
pants, could bias their review speed. To partially counter this threat, we did
not tell participants the number of the review tasks, so that the time allotted
per task was unknown to them. To avoid one participant’s time influencing
another’s in the lab setting, only one participant took part at a time. We
asked participants to not talk to others about details of the experiment but
cannot tell whether everyone complied. Participants did not get feedback on
their review performance during the experiment, to not influence them to go
faster or more thoroughly than they normally would.

A sample of 50 professional software developers is large in comparison
to many experiments in software engineering (Sjgberg et al, 2005). For other

32 Tobias Baum et al.

sources of variation, we had to limit ourselves to considerably smaller samples,
leading to a risk of mono-operation bias and limited generalizability: We only
have three different code changes, only four different change part orders for
RQs and analyzed only one defect type in detail for RQs. Similarly, the set of
analyzed defects and defects types for RQ; is limited to a small sample of all
possible defects and defect types, and there might well be other defect types
whose detection is influenced by working memory capacity.

A common threat in software engineering studies is hypothesis guessing by
the participants. In our study, we stated only abstractly that we are interested
in improving the efficiency of code review and did not mention ordering of
code at all. Furthermore, we put more risky parts with regard to hypothesis
guessing, such as the working memory span test, at the end.

Internal Validity. A likely consequence of the difficult task is the ordering
effect we observed, i.e., participants spent less time on the last review. By ran-
dom, balanced group assignment and inclusion of the review number in the
regression model for RQs we tried to counter the ensuing risk. Due to drop-
outs and the failed assumptions of the Ime model we did not fully succeed. We
observed a high drop-out rate, likely again a consequence of the difficult task
and the online setting. A larger share of drop-outs, 23 of 37, happened when
either a WF or WNF order was shown. On average, the drop-outs had lower
review practice and performed less well in the short, warm-up review (differ-
ential attrition), which could partly explain the differences between groups
described in Section 4.3. We had to analyze each treatment group separately
to counter that risk.

A threat to validity in an online setting is the missing control over par-
ticipants, which is amplified by their full anonymity. To mitigate this threat,
we included questions to characterize our sample (e.g., experience, role, screen
size). To identify and exclude duplicate participation, we logged hashes of par-
ticipant’s local and remote IP addresses and set cookies in the browser. By
having a subset of the participants perform the experiment in a controlled
setting, we controlled this threat further by comparing the two sub-samples.
There are signs that the participants in the controlled setting showed less fa-
tigue and more motivation, i.e., the difference in review time between first and
second large review is less pronounced than in the online setting. We asked the
participants to review in full-screen mode and did not mention jEdit, but we
cannot fully rule out that participants in the online setting searched for parts
of the code on the internet. If somebody did, this would increase the noise in
our data. Because we had to use an online algorithm to assign participants to
treatment groups, we could not create groups as balanced as in a setting with
a set of participants known in advance.

The participant sample is self-selected. Many potential reasons for partici-
pation make it more likely that the sample contains better and more motivated
reviewers than the population of all software developers. We do not believe
this poses a major risk to the validity of our main findings; on the contrary, we
would expect stronger effects with a more representative sample. The working

Working Memory, Code Ordering and Code Review Performance 33

memory span scores we observed were higher than those observed in other
studies (Unsworth et al, 2005; Oswald et al, 2015). The resulting slight ceiling
effect might have reduced statistical power in the analyses including work-
ing memory span scores. We attribute this effect to the selection bias'® and
possibly also to a general difference in working memory span scores between
software developers and the general population. Still, it could also be a sign
of a flaw in our implementation of the working memory span test. A downside
of having the working memory span test at the end is that we cannot detect
a measurement error caused by only measuring participants that are tired
due to the reviews. Given the above-average working memory test results of
the participants compared to other studies, this does not seem to be a major
problem.

Statistical Conclusion Validity. Ideally, we would like to show a causal re-
lationship between working memory capacity and review effectiveness for RQ;.
This demands controlled changes to working memory capacity (Pearl, 2001),
which is ethically infeasible. Therefore, we check for potential confounders (see
Table 4) but cannot reliably rule out unobserved confounders and report only
on associations.

We randomized the order of the two large reviews, but the small review
was always first. This is owed to its dual role as a warm-up review for RQs
and as part of RQz. We chose this compromise because there already exists
evidence for RQs. By randomizing the order of the large reviews and having
a warm-up review, we avoid threats due to ordering, maturation and similar
effects for RQs.

A failure to reach statistically significant results is problematic because
it can have multiple causes, e.g., a non-existent or too small effect or a too
small sample size. Based on our power analysis for RQs, we planned to reach
a larger sample of participants than we finally got, and the sample we got had
to be split into three sub-samples due to differential attrition. This could be a
reason that we did not reach statistical significance for RQs. For the analysis
with linear-mixed effect models for RQgs, the statistical conclusions could be
influenced by failing to meet several assumptions of these models (normality
of residuals, homoscedasticity). Therefore, we decided to also report results
from Wilcoxon signed-rank tests, which do not share these assumptions. But
these tests have their own problems, mainly that they do not account for the
imbalance in treatment group sizes and have lower power. All in all, we are
not able to draw reliable conclusions for RQs.

5.2 Implications and Future Work

The results of the experiment are generally compatible with earlier results and
hypotheses: (1) There is a possibly mediated influence of working memory ca-
pacity on certain aspects of software development performance (in our case:

15 This explanation is supported by the negative correlation between company /online set-
ting and working memory (Table 9)

34 Tobias Baum et al.

finding of delocalized defects); (2) code change size is indeed a major factor
influencing code review performance; (3) on the predictions of our proposed
ordering theory, we found largely compatible tendencies, but no statistically
significant results. A possible contradiction to the theory is the comparison of
means for the condition that does not respect file boundaries (ONF-WNF).
Future studies can be designed to investigate further whether this is a statis-
tical artifact or does indeed point to a problem in our theory, in addition to
replicating to gain higher power and more reliable results.

Working memory in review studies and tools. Given the evidence that
working memory capacity (1) does influence review performance for delocal-
ized defects and (2) can be measured computerized in around 10 minutes
per participant, it is reasonable to recommend researchers to measure it as a
potential confounding factor. This finding also has practical implications for
reviewer recommendation (Thongtanunam et al, 2015b): Code changes with
more potential for delocalized defects could be assigned to reviewers with
higher working memory capacity. Moreover, working memory capacity could
be used when distinguishing between reviewers for critical and less critical code
changes in an attempt to find a globally optimal reviewer assignment (Baum
and Schneider, 2016).

Natural-born reviewer? Not exclusively. Working memory capacity influ-
ences only the detection of certain defect types, moreover review performance
is influenced by other factors like the time taken and (possibly) experience
and practice. This suggests that—to a large degree—one is not born as a
good reviewer, but one learns to act as one. This finding is a compelling argu-
ment to conduct research on how to help developers become good reviewers
faster. Furthermore, there is value in helping reviewers with lower working
memory span to overcome their limitations. Better change part ordering is
just one potential avenue; another example is to provide summarizations of
the change (Pollock et al, 2009; Baum and Schneider, 2016) to help the re-
viewer overcome working memory limits by chunking. That the factors that
influence detection effectiveness differ between defect types leads to several
new questions: Which further factors influence effectiveness for other defect
types? And which other defect types are there at all? Studies can be carried
out to investigate better review support for defect types that are currently not
found easily. The higher difficulty of finding delocalized defects also underlines
the validity of common software architecture guidelines like encapsulation and
cohesive modules (Parnas, 1972), and might also hint to the benefits of good
software design for reviews.

Change features and review performance. The confirmation that re-
view performance declines for larger, more complex code changes strengthens
the case for the research on change untangling and identification of system-
atic changes. We did not explore the underlying mechanisms in much detail,
therefore open questions remain: Is the change in review performance more
an effect of complexity, as suggested by the hypothesis on mental load, or an
effect of size? What happens when smaller code changes can only be reached

Working Memory, Code Ordering and Code Review Performance 35

by an “unnatural” division of the work? The mean efficiency and effectiveness
for code change A and code change B are astonishingly similar given their
differing sizes and characteristics. Were we just lucky when trying to select
code changes of similar complexity, or is there some kind of saturation effect?
Reducing emphasis on external validity in a follow-up study would allow the
construction of artificial code changes to analyze these questions systemati-
cally. Another notable property of our data is related to the observed order-
ing effect: Review times were much shorter for the second large review and
mean review effectiveness is smaller, as expected. But review efficiency actu-
ally increased. Studies could investigate the counter-intuitive inference that it
could be more efficient to review more superficially, perhaps with Rasmussen’s
model of rule-based versus knowledge-based cognitive processing as a theoret-
ical background (Rasmussen, 1983).

Code change ordering. Albeit we did not reach statistical significance for
the effect of change part ordering, we regard the results as interesting enough
to support further effort put into code review tooling that sorts change parts
into an improved order. Once such tooling is available, the risk and effort
of using it in a team are very small, compared to classic reading techniques
that have to be taught to every reviewer. To provide more convincing support
for the underlying hypothesis that the effect is caused by reduced cognitive
load, cognitive load could be measured explicitly (Chen et al, 2016; Fritz et al,
2014). Further insights could also be gained by more directly studying the
processes in the brain (Siegmund et al, 2017). An alternative approach to find
good orders for reviewing code could be to use empirical data from successful
reviews to learn models of navigation behavior.

Cognitive load reduction as a paradigm in review research. Is the
model of mental and cognitive load adequate to explain performance in code
reviews? Our results generally support the model, but it could be too simple
and abstract to be useful to explain many of the above-listed effects and to
guide research. One example we would like to see improved are the currently
fuzzy definitions of the central constructs of mental and cognitive load. Re-
search can be carried out to investigate an extended version of the model, more
specific for code reviews, and test it more thoroughly than we could with a
single limited experiment.

5.3 Lessons Learned

There are several problems that could have been avoided with more intensive
and more realistic testing before the start of the experiment: A size limit to
the size of ‘post’ requests to the HTTP server led to a problem with one
participant in the controlled setting and a compile error introduced when
seeding the defects was missed. Also, the time needed for participation was
underestimated based on misleading results from the pre-tests. That said, the
canary release strategy proved useful by avoiding further problems in the later
phases of the experiment.

36 Tobias Baum et al.

During experiment design, we decided to adjust the original code changes
as little as possible, which meant not fixing even glaring maintenance and
code style issues like empty Javadoc comments. In retrospect, this decision
seems questionable. Fixing some code style issues would have threatened the
experiment’s realism only marginally and arguably could have even improved
it. Moreover, less of these issues could have reduced noise in the data.

Another choice was to use three combinations of four different change part
orders in the experiment. Comparing fewer orders or combinations would have
improved statistical power for RQg, but the risk of choosing an order without
an effect would have been higher, as would mono-operation bias. Therefore,
we still believe the trade-off to be justified.

Others aspects worked well: Having an online experiment and advertising
it to personal networks and interest groups allowed a high number of partici-
pants that would probably have been even higher with a less demanding task.
By gathering demographic data on the participants and by adding various
checks, e.g., to counter duplicate participation, we could control many of the
corresponding threats. On the down-side, the online setting probably aided the
differential attrition which greatly impeded the statistical analysis for RQjs.

6 Summary

We performed an experiment, using a browser-based experiment platform we
devised, to test several hypotheses relating to the influence of cognitive load
on change-based code review performance: Is the reviewer’s working mem-
ory capacity associated with code review effectiveness? Does code change
size/complexity influence code review effectiveness? Does the order of pre-
senting the code change parts influence code review efficiency? We gathered
usable data from 50 participants (resp. 45 for working memory), most of them
professional developers, who performed (in a median time of 84 minutes) one
small review and two large reviews each, with different orders of presenting
the code for the large reviews. We found that working memory capacity is
correlated with the effectiveness of finding delocalized defects, but not with
the other types of defects we seeded. We confirmed that larger, more complex
code changes are associated with lower code review effectiveness. There seems
to be an effect of change part ordering, too, but it is not statistically signifi-
cant for our sample. Besides these main findings, our study resulted in a rich
dataset of code review interaction logs that we make available together with
our replication package (Baum et al, 2018).

Acknowledgements We thank all participants and all pre-testers for the time and effort
they donated. We furthermore thank Sylvie Gasnier and Giinter Faber for advice on the
statistical procedures and Javad Ghofrani for help with double-checking the defect cod-
ing. We thank Bettina von Helversen from the psychology department at the University of
Zurich for advice on the parts related to the theory of cognitive load. Bacchelli gratefully ac-
knowledges the support of the Swiss National Science Foundation through the SNF Project
No. PP00P2_170529. This is a post-peer-review, pre-copyedit version of an article published

Working Memory, Code Ordering and Code Review Performance 37

in Empirical Software Engineering. The final authenticated version is available online at:
http://dx.doi.org/10.1007/s10664-018-9676-8

References

Abdelnabi Z, Cantone G, Ciolkowski M, Rombach D (2004) Comparing code
reading techniques applied to object-oriented software frameworks with re-
gard to effectiveness and defect detection rate. In: Empirical Software En-
gineering, 2004. ISESE’04. Proceedings. 2004 International Symposium on,
IEEE, pp 239-248

Agresti A (2007) An introduction to categorical data analysis, 2nd edn. Wiley

Agresti A (2010) Analysis of Ordinal Categorical Data, 2nd edn. Wiley

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of mod-
ern code review. In: Proceedings of the 2013 International Conference on
Software Engineering, IEEE Press, pp 712-721

Balachandran V (2013) Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation.
In: Proceedings of the 2013 International Conference on Software Engineer-
ing, IEEE Press, pp 931-940

Barnett M, Bird C, Brunet J, Lahiri SK (2015) Helping developers help them-
selves: Automatic decomposition of code review changesets. In: Proceedings
of the 2015 International Conference on Software Engineering. IEEE Press

Barton K (2018) MuMIn: Multi-Model Inference. URL https://CRAN.R-
project.org/package=MuMIn, r package version 1.42.1

Basili V, Caldiera G, Lanubile F, Shull F (1996) Studies on reading tech-
niques. In: Proc. of the Twenty-First Annual Software Engineering Work-
shop, vol 96, p 002

Bates D, Maechler M, Bolker B, Walker S, et al (2014) Ime4: Linear mixed-
effects models using eigen and s4. R package version 1(7):1-23

Baum T, Schneider K (2016) On the need for a new generation of code review
tools. In: Product-Focused Software Process Improvement: 17th Interna-
tional Conference, PROFES 2016, Trondheim, Norway, November 22-24,
2016, Proceedings 17, Springer, pp 301-308, DOT 10.1007/978-3-319-49094-
6-19

Baum T, Liskin O, Niklas K, Schneider K (2016a) A faceted classification
scheme for change-based industrial code review processes. In: Software Qual-
ity, Reliability and Security (QRS), 2016 IEEE International Conference on,
IEEE, Vienna, Austria, DOI 10.1109/QRS.2016.19

Baum T, Liskin O, Niklas K, Schneider K (2016b) Factors influencing code re-
view processes in industry. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ACM,
New York, NY, USA, FSE 2016, pp 85-96, DOI 10.1145/2950290.2950323

Baum T, LeBmann H, Schneider K (2017a) The choice of code review process:
A survey on the state of the practice. In: Felderer M, Méndez Fernandez
D, Turhan B, Kalinowski M, Sarro F, Winkler D (eds) Product-Focused

38 Tobias Baum et al.

Software Process Improvement, Springer International Publishing, Cham,
pp 111-127, DOI 10.1007/978-3-319-69926-4_9

Baum T, Schneider K, Bacchelli A (2017b) On the optimal order of reading
source code changes for review. In: 33rd IEEE International Conference on
Software Maintenance and Evolution (ICSME), Proceedings, pp 329-340,
DOIT 10.1109/ICSME.2017.28

Baum T, Schneider K, Bacchelli A (2017¢) Online mate-
rial for ”On the optimal order of reading source code
changes for review”. DOI 10.6084/m9.figshare.5236150, URL
http://dx.doi.org/10.6084/m9.figshare.5236150

Baum T, Schneider K, Bacchelli A (2018) Online material for ”As-
sociating working memory capacity and code change ordering with
code review performance”. DOI 10.6084/m9.figshare.5808609, URL
http://dx.doi.org/10.6084/m9.figshare.5808609

Bergersen GR, Gustafsson JE (2011) Programming skill, knowledge, and work-
ing memory among professional software developers from an investment the-
ory perspective. Journal of Individual Differences 32(4):201-209

Bernhart M, Grechenig T (2013) On the understanding of programs with con-
tinuous code reviews. In: Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on, IEEE, San Francisco, CA, USA, pp 192-198

Biegel B, Beck F, Hornig W, Diehl S (2012) The order of things: How devel-
opers sort fields and methods. In: Software Maintenance (ICSM), 2012 28th
IEEE International Conference on, IEEE, pp 88-97

Biffl S (2000) Analysis of the impact of reading technique and inspector capa-
bility on individual inspection performance. In: Software Engineering Con-
ference, 2000. APSEC 2000. Proceedings. Seventh Asia-Pacific, IEEE, pp
136-145

Chen F, Zhou J, Wang Y, Yu K, Arshad SZ, Khawaji A, Conway D (2016)
Robust Multimodal Cognitive Load Measurement. Springer

Cohen J (1977) Statistical power analysis for the behavioral sciences. Revised
edition. Academic Press

Cowan N (2010) The magical mystery four: How is working memory capacity
limited, and why? Current directions in psychological science 19(1):51-57

Crk I, Kluthe T, Stefik A (2016) Understanding programming expertise:
an empirical study of phasic brain wave changes. ACM Transactions on
Computer-Human Interaction (TOCHI) 23(1):2

Daneman M, Carpenter PA (1980) Individual differences in working memory
and reading. Journal of verbal learning and verbal behavior 19(4):450-466

Daneman M, Merikle PM (1996) Working memory and language comprehen-
sion: A meta-analysis. Psychonomic bulletin & review 3(4):422-433

Denger C, Ciolkowski M, Lanubile F (2004) Investigating the active guidance
factor in reading techniques for defect detection. In: Empirical Software En-
gineering, 2004. Proceedings. International Symposium on, IEEE, pp 219—
228

DeStefano D, LeFevre JA (2007) Cognitive load in hypertext reading: A re-
view. Computers in human behavior 23(3):1616-1641

Working Memory, Code Ordering and Code Review Performance 39

Dias M, Bacchelli A, Gousios G, Cassou D, Ducasse S (2015) Untangling fine-
grained code changes. In: Software Analysis, Evolution and Reengineering,
2015 IEEE 22nd International Conference on, IEEE, pp 341-350

Dowell J, Long J (1998) Target paper: conception of the cognitive engineering
design problem. Ergonomics 41(2):126-139

Dunsmore A, Roper M, Wood M (2000) Object-oriented inspection in the face
of delocalisation. In: Proceedings of the 22nd International Conference on
Software Engineering, ACM, pp 467476

Dunsmore A, Roper M, Wood M (2001) Systematic object-oriented inspection
— an empirical study. In: Proceedings of the 23rd International Conference
on Software Engineering, IEEE Computer Society, pp 135-144

Dunsmore A, Roper M, Wood M (2003) The development and eval-
uation of three diverse techniques for object-oriented code inspec-
tion. Software Engineering, IEEE Transactions on 29(8):677-686, DOI
10.1109/TSE.2003.1223643

Ebert F, Castor F, Novielli N, Serebrenik A (2017) Confusion detection
in code reviews. In: 33rd International Conference on Software Mainte-
nance and Evolution (ICSME), Proceedings, ICSME, pp 549-553, DOI
10.1109/ICSME.2017.40

Fagan ME (1976) Design and code inspections to reduce errors in program
development. IBM Systems Journal 15(3):182-211

Falessi D, Juristo N, Wohlin C, Turhan B, Miinch J, Jedlitschka A, Oivo M
(2017) Empirical software engineering experts on the use of students and
professionals in experiments. Empirical Software Engineering pp 1-38

Field A, Hole G (2002) How to design and report experiments. Sage

Fritz T, Begel A, Miiller SC, Yigit-Elliott S, Ziiger M (2014) Using psycho-
physiological measures to assess task difficulty in software development. In:
Proceedings of the 36th International Conference on Software Engineering,
ACM, pp 402-413

Geffen Y, Maoz S (2016) On method ordering. In: Program Comprehen-
sion (ICPC), 2016 IEEE 24th International Conference on, pp 1-10, DOI
10.1109/ICPC.2016.7503711

Gilb T, Graham D (1993) Software Inspection. Addison-Wesley

Gousios G, Pinzger M, Deursen Av (2014) An exploratory study of the pull-
based software development model. In: Proceedings of the 36th International
Conference on Software Engineering, ACM, Hyderabad, India, pp 345-355

Hassan AE (2009) Predicting faults using the complexity of code changes. In:
Proceedings of the 31st International Conference on Software Engineering,
IEEE Computer Society, pp 78-88

Herzig K, Zeller A (2013) The impact of tangled code changes. In: Mining Soft-
ware Repositories (MSR), 2013 10th IEEE Working Conference on, IEEE,
pp 121-130

Humble J, Farley D (2011) Continuous delivery. Addison-Wesley

Hungerford BC, Hevner AR, Collins RW (2004) Reviewing software diagrams:
A cognitive study. IEEE Transactions on Software Engineering 30(2):82-96

40 Tobias Baum et al.

IEEE 24765 (2010) Systems and software engineering vocabulary iso/iec/ieee
24765: 2010. Standard 24765, ISO/IEC/IEEE

Jaccard P (1912) The distribution of the flora in the alpine zone. New phytol-
ogist 11(2):37-50

Kalyan A, Chiam M, Sun J, Manoharan S (2016) A collaborative code re-
view platform for github. In: Engineering of Complex Computer Systems
(ICECCS), 2016 21st International Conference on, IEEE, pp 191-196

Laguilles JS, Williams EA, Saunders DB (2011) Can lottery incentives boost
web survey response rates? findings from four experiments. Research in
Higher Education 52(5):537-553

Laitenberger O (2000) Cost-effective detection of software defects through
perspective-based inspections. PhD thesis, Universitat Kaiserslautern

MacLeod L, Greiler M, Storey MA, Bird C, Czerwonka J (2017) Code re-
viewing in the trenches: Understanding challenges and best practices. IEEE
Software 35(4):34-42, DOI 10.1109/MS.2017.265100500

Mantyla MV, Lassenius C (2009) What types of defects are really discovered
in code reviews? Software Engineering, IEEE Transactions on 35(3):430-448

Matsuda J, Hayashi S, Saeki M (2015) Hierarchical categorization of edit oper-
ations for separately committing large refactoring results. In: Proceedings of
the 14th International Workshop on Principles of Software Evolution, ACM,
pp 19-27

McCabe TJ (1976) A complexity measure. IEEE Transactions on Software
Engineering (4):308-320, DOI 10.1109/TSE.1976.233837

McIntosh S, Kamei Y, Adams B, Hassan AE (2015) An empirical study of
the impact of modern code review practices on software quality. Empirical
Software Engineering pp 1-44

McMeekin DA, von Konsky BR, Chang E, Cooper DJ (2009) Evaluating soft-
ware inspection cognition levels using bloom’s taxonomy. In: Software En-
gineering Education and Training, 2009. CSEET’09. 22nd Conference on,
IEEE, pp 232-239

Miller GA (1956) The magical number seven, plus or minus two: some limits
on our capacity for processing information. Psychological review 63(2):81

Oswald FL, McAbee ST, Redick TS, Hambrick DZ (2015) The development
of a short domain-general measure of working memory capacity. Behavior
research methods 47(4):1343-1355

Paas FG, Van Merriénboer JJ (1994) Instructional control of cognitive load
in the training of complex cognitive tasks. Educational psychology review
6(4):351-371

Parnas DL (1972) On the criteria to be used in decomposing systems into
modules. Commun ACM DOI 10.1145/361598.361623

Pearl J (2001) Causality: models, reasoning, and inference. Cambridge Uni-
versity Press

Perneger TV (1998) What’s wrong with bonferroni adjustments. BMJ: British
Medical Journal 316(7139):1236

Platz S, Taeumel M, Steinert B, Hirschfeld R, Masuhara H (2016) Unravel
programming sessions with thresher: Identifying coherent and complete sets

Working Memory, Code Ordering and Code Review Performance 41

of fine-granular source code changes. In: Proceedings of the 32nd JSSST
Annual Conference, pp 24-39, DOI 10.11185/imt.12.24

Pollock L, Vijay-Shanker K, Hill E, Sridhara G, Shepherd D (2009) Natural
language-based software analyses and tools for software maintenance. In:
Software Engineering, Springer, pp 94-125

Porter A, Siy H, Mockus A, Votta L (1998) Understanding the sources of vari-
ation in software inspections. ACM Transactions on Software Engineering
and Methodology (TOSEM) 7(1):41-79

Rasmussen J (1983) Skills, rules, and knowledge; signals, signs, and sym-
bols, and other distinctions in human performance models. IEEE trans-
actions on systems, man, and cybernetics SMC-13(3):257-266, DOI
10.1109/TSMC.1983.6313160

Raz T, Yaung AT (1997) Factors affecting design inspection effectiveness in
software development. Information and Software Technology 39(4):297-305

Rigby PC, Bird C (2013) Convergent contemporary software peer review prac-
tices. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering, ACM, Saint Petersburg, Russia, pp 202-212

Rigby PC, Storey MA (2011) Understanding broadcast based peer review on
open source software projects. In: Proceedings of the 33rd International
Conference on Software Engineering, ACM, pp 541-550

Rigby PC, Cleary B, Painchaud F, Storey M, German DM (2012) Contempo-
rary peer review in action: Lessons from open source development. Software,
IEEE 29(6):56-61

Rigby PC, German DM, Cowen L, Storey MA (2014) Peer review on open
source software projects: Parameters, statistical models, and theory. ACM
Transactions on Software Engineering and Methodology 23:35:1-35:33, DOI
10.1145,/2594458

Robbins B, Carver J (2009) Cognitive factors in perspective-based reading
(pbr): A protocol analysis study. In: Proceedings of the 2009 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement,
IEEE Computer Society, pp 145-155

Rothlisberger D, Harry M, Binder W, Moret P, Ansaloni D, Villazon A, Nier-
strasz O (2012) Exploiting dynamic information in ides improves speed
and correctness of software maintenance tasks. Software Engineering, IEEE
Transactions on 38(3):579-591

Sauer C, Jeffery DR, Land L, Yetton P (2000) The effectiveness of software de-
velopment technical reviews: A behaviorally motivated program of research.
Software Engineering, IEEE Transactions on 26(1):1-14

Siegmund J, Peitek N, Parnin C, Apel S, Hofmeister J, Késtner C, Begel A,
Bethmann A, Brechmann A (2017) Measuring neural efficiency of program
comprehension. In: Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ACM, pp 140-150

Simon HA (1974) How big is a chunk? Science 183(4124):482-488

Singer E, Ye C (2013) The use and effects of incentives in surveys. The AN-
NALS of the American Academy of Political and Social Science 645(1):112—
141

42 Tobias Baum et al.

Sjeberg DI, Hannay JE, Hansen O, Kampenes VB, Karahasanovic A, Liborg
NK, Rekdal AC (2005) A survey of controlled experiments in software en-
gineering. Software Engineering, IEEE Transactions on 31(9):733-753

Skoglund M, Kjellgren V (2004) An experimental comparison of the effective-
ness and usefulness of inspection techniques for object-oriented programs.
In: 8th International Conference on Empirical Assessment in Software En-
gineering (EASE 2004), IET, pp 165-174, DOI 10.1049/ic:20040409

Sweller J (1988) Cognitive load during problem solving: Effects on learning.
Cognitive science 12(2):257-285

Tao Y, Kim S (2015) Partitioning composite code changes to facilitate code
review. In: Mining Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on, IEEE, pp 180-190

Thongtanunam P, McIntosh S; Hassan AE, Tida H (2015a) Investigating code
review practices in defective files: An empirical study of the qt system. In:
MSR ’15 Proceedings of the 12th Working Conference on Mining Software
Repositories, pp 168-179

Thongtanunam P, Tantithamthavorn C, Kula RG, Yoshida N, lida H, Mat-
sumoto Ki (2015b) Who should review my code? a file location-based code-
reviewer recommendation approach for modern code review. In: Software
Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd Interna-
tional Conference on, pp 141-150, DOI 10.1109/SANER.2015.7081824

Unsworth N, Heitz RP, Schrock JC, Engle RW (2005) An automated version
of the operation span task. Behavior research methods 37(3):498-505

Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn.
Springer, New York, URL http://www.stats.ox.ac.uk/pub/MASS4, iSBN
0-387-95457-0

Walenstein A (2002) Theory-based analysis of cognitive support in software
comprehension tools. In: Program Comprehension, 2002. Proceedings. 10th
International Workshop on, IEEE, pp 75-84

Walenstein A (2003) Observing and measuring cognitive support: Steps toward
systematic tool evaluation and engineering. In: Program Comprehension,
2003. 11th IEEE International Workshop on, IEEE, pp 185-194

Wilhelm O, Hildebrandt A, Oberauer K (2013) What is working memory
capacity, and how can we measure it? Frontiers in psychology 4, DOI
10.3389/fpsyg.2013.00433

Zhang T, Song M, Pinedo J, Kim M (2015) Interactive code review for system-
atic changes. In: Proceedings of 37th IEEE/ACM International Conference
on Software Engineering. IEEE, pp 111-122, DOI 10.1109/ICSE.2015.33

