
A Faceted Classification Scheme for Change-Based
Industrial Code Review Processes

Tobias Baum, Olga Liskin, Kai Niklas and Kurt Schneider
Leibniz Universität Hannover

Hannover, Germany
Email: [firstname.lastname]@inf.uni-hannover.de

Abstract—Code review in the industry today is different to
code review twenty years ago. The process has become more
lightweight, reviews are performed frequently and change-based
and the use of specialized tools is increasing. An accurate view
of the current state of the industrial practice is an indispens-
able foundation for improving it. Most recent descriptions of
review practices come from a limited population of large high-
tech companies. Therefore, we used interviews with software
engineering professionals from a broad sample of 19 companies
to gain insight into their code review practices. We augmented
our findings with data for 11 companies found through a semi-
systematic literature review. There are many commonalities in
the code review processes of these companies, but also a lot
of variation in the details. A simple process taxonomy cannot
describe these variations adequately. Therefore, we present a
faceted classification scheme that is grounded in our observations.

Index Terms—Code Reviews, Code Inspections and Walk-
throughs, Software Engineering Process, Empirical Software
Engineering

I. INTRODUCTION

Code review, especially in the form of Inspection [1], is a
well-researched pillar of software quality assurance. In recent
years, the code review practices in industry have changed
considerably. Coinciding with the rise of agile and open
source development practices, they have become more light-
weight, continuous and asynchronous [2]. There are several
studies that describe the state of or improvements to the
code review processes of large high-tech companies and open
source projects. For small and medium software enterprises
(SMEs), there is much less evidence.

Our long-term research objective is to improve the use of
code reviews in industry, with a focus on SMEs. A thorough
understanding of the current state of the practice and of the un-
derlying reasons and problems will help to guide this research.
Therefore, we performed a grounded theory study based on
interviews with 24 software engineering professionals from
19 companies. Of these companies, 11 regularly perform code
reviews. The current article presents some of the insights
gained from these interviews. The broad research questions
treated in this article are: How is code review performed
in industry today? Which commonalities and variations exist
between code review processes of different teams and com-
panies? To triangulate our findings, we performed a semi-
systematic literature review to find recent descriptions of code
review processes in the research literature. We consolidated the
findings from the interviews and from the literature review into

a classification scheme for industrial code review processes.
This classification scheme is focused on change-based code
review processes, because we found them to be the dominant
type of code review in our sample. Our study is one of the
largest and most detailed studies of industrial code review
practices to date. The presented classification scheme can
help to guide future research. It can also be valuable for
practitioners by stimulating their creativity when there are
problems with their current code review process.

II. RELATED WORK

There is a large body of literature on code reviews and
inspections, with the works from Fagan [1] often seen as
the most important initial contribution. Much of the early
knowledge on inspections has been condensed in books, like
the ones by Gilb and Graham [3] and Wiegers [4], and
literature reviews [5] [6]. An IEEE standard defines classical
forms of reviews [7]. All of these books and articles contain
some sort of taxonomy or classification scheme for review
processes. The scheme presented by Laitenberger and DeBaud
[6] is faceted, as is the scheme by Kim, Sauer and Jeffery [8].
Macdonald and Miller [9] develop a domain-specific language
for the description of inspection processes based on a detailed
comparison of different processes from the literature. All of
these schemes focus on classic inspections and none of them
is based on recent empirical data.

Most recent studies that describe code review processes only
describe a single case or company. We identified a number
of those studies in the semi-systematic literature review (see
section III-B). They are shown in table II.

A study that consolidates several cases has been done by
Kollanus and Koskinen [10]. It describes software inspection
practices based on interviews with practitioners from five
Finnish companies. In their sample, code review was quite rare
and consequently not described in much detail. They conclude
stating a need for further case studies on characteristics and
problems of software inspection in practice.

In Rigby’s and Bird’s recent study [2], they compare peer
review processes from several projects and note convergence
towards a common process. This process is lightweight, flexi-
ble and based on the frequent review of small changes. Their
analysis contains qualitative and quantitative parts, with a
focus on the quantitative analysis of data sets from review
tools. They surveyed a broad range of projects, but their



TABLE I
DEMOGRAPHICS AND REVIEW USE OF COMPANIES FROM THE INTERVIEW STUDY

ID type employees
(IT, approx.) country dev. process spatial regular review use

IA in-house IT, travel 450 DE agile co-located no
IB standard software, dev. tools 400 CZ ad hoc distributed yes
IC standard software, government 200 DE classic / ad hoc co-located no
ID standard software, CAD 100 DE ad hoc co-located yes
IE standard software, output mgmt. 70 DE agile co-located yes
IF standard software, agriculture 130 DE agile co-located yes
IG standard software, retail 50 DE agile co-located yes
IH contractor, automotive 70 DE agile co-located yes
II SaaS, dev. tools 5 US ad hoc distributed no
IJ in-house IT, finance 1100 DE ad hoc co-located no
IK in-house IT, finance 200 DE classic co-located no
IL in-house IT, finance 400 DE classic co-located yes
IM in-house IT, government 200 DE classic co-located no
IN in-house IT, marketing 50 DE agile co-located no
IO – – DE – co-located yes
IP in-house IT, finance – DE – distributed yes
IQ in-house IT, retail 120 DE classic / agile co-located yes
IR in-house IT, marketing 50 DE agile co-located no
IS in-house IT, automotive 4000 DE agile co-located yes

study is limited to projects from large companies (Google,
Microsoft, AMD) and large open source projects (Apache,
Subversion, Linux, . . . ). Our study differs from theirs by using
a different methodology and extends it by studying a broader
range of organization sizes and styles. Nevertheless, Rigby’s
and Bird’s study is the one most closely related to ours and
many of our findings confirm theirs.

Besides these qualitative studies, there are questionnaire-
based surveys on review usage in practice: The largest sci-
entific survey was done in 2002 by Ciolkowski, Laitenberger
and Biffl [11]. Based on 226 responses, they found a share of
28% of the participants doing code reviews.

III. METHODOLOGY

The current article consolidates two independent data sets,
one from an interview study that was done using Grounded
Theory methodology [12], [13], [14], the other from a semi-
systematic literature review. Section III-A provides details on
the former, section III-B on the latter. Section III-A also
contains a description of the method we used to derive the
classification scheme.

A. Interview Study

To describe review practices without being biased by pub-
lished suggestions for review processes, we chose an inductive,
data-driven approach as our main method of analysis. We have
chosen interviews with practitioners as our primary source of
data because they are well-suited to elicit detailed descriptions
and to avoid misunderstandings.

We performed “theoretical sampling” to select the intervie-
wees: We used our emerging results to choose further partici-
pants, for example from a so far little-investigated context. We
gained access to them either by direct or indirect personal con-
nections or by approaching them on conferences or after they
showed interest in code reviews on the Internet. In total, we

performed 22 interviews with 24 participants. They described
22 different cases of code review use in 19 companies. The
resulting sample of companies is heterogeneous, going in size
from 5 to about 4000 IT employees, and using agile as well as
classic and ad hoc processes. A majority of the companies are
based in Germany and work co-located, but we also included
contrasting cases. Detailed information on the companies can
be seen in table I. The interviewees for companies IN, IO and
IP were interviewed in a group interview. This turned out to
be problematic because there was not enough time to convey
all relevant information and we could not reach IO and IP
to clarify further questions afterward. The interviewees were
mostly software developers and team or project leaders, with
an industrial software development experience ranging from
3 to 30 years. For all companies but IE, we only interviewed
one participant each. The interviews were conducted between
September 2014 and May 2015. Data collection was stopped
when theoretical saturation was reached, i.e. when there was
only marginal new information in the last interviews.

The interviews were semi-structured, using open-ended
questions. The corresponding interview guide was initially
created based on the research questions and checked by
another researcher who has experience with interview stud-
ies and Grounded Theory. It was later continually adjusted
according to earlier interview experiences and the emerging
theory1. All interviews were recorded and later transcribed.
Most interviews were conducted by the first author. Some of
the interviewees were colleagues of the first author. To reduce
the resulting bias as a potential threat to credibility, these
particular interviews were performed by the second author.

After performing and transcribing the first few interviews,

1The first and last used versions of the interview guide are available
online: http://tobias-baum.de/rp/interviewGuideFirst.pdf,
http://tobias-baum.de/rp/interviewGuideLast.pdf



we started data analysis: We used open coding to identify
common themes in the data and analyzed the resulting codes
for dimensions in which they vary as well as similarities.
Coding was done paper-based at first and later using Atlas.TI
[15]. Coding was done incrementally and iteratively, including
new interviews as they were taken and revisiting most inter-
views several times. The results were compared and discussed
afterward to check for possible bias or different viewpoints.
The resulting analysis was reported back to all participants,
asking for review regarding misunderstandings and relevance.
This “member checking” resulted in minor extensions and
changes to our results and increased our confidence that they
are a suitable abstraction of the data.

We included a variation point as a facet of the classification
scheme when it is an identifiable, fixed part of the process
for at least one case and at least two different variations were
observed. Some of the interviewees reported several distinct
“cases” of review use for a single company. We consider a
review variant a distinct case if it differs from other review
process variants in the same company and if this choice only
depends on external factors (team, product, . . . ). We will later
use the IDs from table I as subscripts to refer to the companies.
When the ID is followed by a number, this refers to a specific
case for that company.

B. Literature Review

We performed a semi-systematic literature review to find
recent descriptions of industrial code review processes. We
used these descriptions to triangulate and extend our findings
from the interviews. The literature review is systematic in the
way that we used the rigorous procedure for snowballing-based
systematic literature reviews described by Wohlin [16]. It is
semi-systematic because the decisions regarding inclusion or
exclusion of studies were done only by a single researcher.

Our inclusion criteria for studies were as follows: (1) the
study has been published since 2006 (inclusive), (2) it has
been peer-reviewed, (3) it is published in English and (4) it
describes code review practices in industry in some detail.
There has to be some clue that the process is really used and
not only brought into the company for a case study by the
researchers. The description of the code review process does
not have to be the article’s main topic, as long as it is described
in enough detail. We included open source projects that are
largely driven by a company (e.g. Android, Qt) as “industrial”
and excluded other open source projects.

The start set consists of four papers: [2], [19], [23], [28].
They have been chosen because they span a number of dif-
ferent years and publication venues. In addition, we consider
the article by Rigby and Bird [2] to be a key publication that
combines several previous studies and that is cited relatively
often. We reached saturation after four iterations. Table II lists
the found sources, grouped by the companies whose code
review process they describe. The information gained from
the publications was much more shallow compared to the rich
descriptions from the interviews. Its main use is as additional
evidence for the identified variants.

TABLE II
COMPANIES WITH REVIEW PROCESS INFORMATION EXTRACTED FROM

THE LITERATURE REVIEW

ID Company name Sources
LA AMD [2], [17]
LX name unknown [18]
LE Eiffel Software [19]
LC Critical Software S.A. [20]
LV VMWare [21]
LF Frequentis [22], [23]
LM Microsoft [2], [24], [25], [26]
LG Google/Android [2], [27]
LS Sony Mobile [28]
LQ Digia/Qt [29]
LL Salesforce.com [30]

IV. RESULTS

The comparison of the code review processes described by
the interviewees as well as in the literature revealed common-
alities and differences of these processes. The basic review
process and its embedding into the development context were
similar in the studied cases. It is described in section IV-A.
To systematize the observed differences, we developed a
classification scheme. Section IV-B provides an overview of
this scheme and some of the rationale behind it. The following
sections IV-C to IV-G describe the single facets in detail.

A. Commonalities of Code Review Processes in Industry

In our interviews, all interviewees had a rather broad
but common idea of code reviews. It is summarized in the
following definition. Together with definition 2, it defines the
scope of our classification scheme:

Definition 1: Code Review is a software quality assur-
ance activity with the following properties:

• The main checking is done by one or several hu-
mans.

• At least one of these humans is not the code’s author.
• The checking is performed mainly by viewing and

reading source code.
• It is performed after implementation or as an inter-

ruption of implementation.
The humans performing the checking, excluding the
author, are called “reviewers”.

Each part of the definition delimits code review towards
other quality assurance techniques, namely static analysis, self
checks, testing and pair programming. All these delimitations
are blurred: Human reviewers can be assisted by static code
analysis, they sometimes execute tests or click through the
GUI, in some cases the author joins the reviewers in checking
his own code, and when author and reviewer jointly correct
issues on-the-fly, they are basically doing pair programming.
Definition 1 specifies a least common denominator of what
practitioners consider a code review, in contrast to the defini-
tions given in the IEEE Standard for Software Reviews and
Audits [7] that describe specific processes in detail.



In our interviews, we observed cases where code review was
performed irregularly and driven by individual needs as well
as cases in which there was a defined and regularly used code
review process. In this article, we focus on the latter type. In
all of the observed cases, this regular code review process was
change-based [31]:

Definition 2: Regular, change-based code review is a
type of code review that is codified in the development
process of the team or organization in the following way:
Every time a “unit of work” is seen as “ready for review”,
all changes that were performed in the course of its
implementation are considered a review candidate. This
candidate is then assessed: For which parts of the change
is a review needed, and is it needed at all? If a review is
needed, the review candidate then waits for the reviewers
to start reviewing.

The term “unit of work” is similar to the “patch set” iden-
tified in other studies. We did not use “patch set” because it
seemed more narrowly focused on specific technologies to us.
We consider “differential code review” [32] to be a synonym to
“change-based code review”. The terms “modern code review”
and “contemporary code review” [2] are sometimes used as
synonyms and sometimes refer to specific sub-variants of
change-based code reviews.

Of the companies from the interviews, eleven (IB, ID - IH,
IL, IO, IP, IQ and IS) have a regular, change-based code review
process, whereas the remaining eight (IA, IC, II, IJ, IK, IM, IN,
IR) only do irregular code reviews. Systematic review that was
not change-based was mentioned in the interviews, but always
in the form of “we did this once, but it was discontinued”.
In the literature, LE and LC describe cases that do not use
change-based code review. All other literature sources describe
change-based code review processes.

We identified the following commonalities of the observed
change-based code review processes:

• No management action is required to trigger single code
reviews, they are triggered solely based on pre-agreed
rules. This replacement of the planning phase with con-
ventions and rules is the difference most consistently
separating change-based code reviews from classical in-
spection variants.

• When code reviews are performed in addition to unit
testing or other developer-centric tests, testing is per-
formed before code review. The same applies to static
code analysis and to (other) checks that are performed
automatically on a continuous integration server.

• The number of reviewers is two or less for the majority
of reviews.

• All teams try to prevent situations in which code review
happens after the changes are released to the customer.

B. A Faceted Classification Scheme for Change-Based Code
Review Process Variation Points

Common classification schemes for review processes use
simple labels like “Inspection”, “walkthrough” or “pass-

Fig. 2. Example of code review embedded in a task ticket’s states. IE [33]

around” to classify types of review processes as a whole.
Such a one-dimensional taxonomy simplifies discussions, but
we found it to be inadequate for describing the variations
we found without losing a lot of information. Therefore, we
opted for a faceted classification scheme: A review process
is described by the combination of values for a number of
facets/dimensions. Because we identified a large number of
facets, we grouped them into thematic categories. The resulting
scheme is summarized in Fig. 1, which shows the groups, the
contained facets and the possible values for the facets. The
number in parentheses is the section in which the group or
facet is described in more detail.

C. Process embedding

The first group of facets contains aspects that varied with
regard to how the code review process is embedded into the
rest of the development process, i.e. when and in which way
a review is triggered and which influences it has on other
process activities.

1) Unit of work: Definition 2 states that the changes
performed in a “unit of work” define the scope of the review.
The smaller the unit of work, the smaller the effort spent on
every single review, but the higher the number of reviews. In
the studied cases, one of these types of “unit of work” was
chosen as a trigger for reviews:
RELEASE Review is triggered for changes that are put into

production or are ready for “production approval” IQ

STORY/REQUIREMENT Review is triggered for a user
story/requirement that is considered done IF1 ,IH ,IL

TASK Many teams divide user stories into separate imple-
mentation tasks. If the chosen value for “unit of work”
is “task”, a review spans the changes done in such an
implementation task. IE ,IF2 ,IG,LX ,LF

PUSH/PULL/COMBINED COMMIT Review is done for each
source code management (SCM) “pull request” or
some other types of combined commit. A pull re-
quest often corresponds to a task when a team uses
both. IB1 ,IO,IS ,LA,LS ,LQ

SINGULAR COMMIT Review is triggered for every small-
grained SCM “commit”. This variant is mainly used when
changes are rare and strictly controlled, such as in release
branches. ID,IB2 ,IP1 ,IP2

2) Tool support/enforcement for triggering: The triggering
of reviews can be supported by tools, or it is done completely
manually:
TOOL A tool ensures that a review candidate is created

for each unit of work. This can be accomplished



Change-based Industrial Code Review

Process embedding (IV-C)

Unit of work (IV-C1):
RELEASE or STORY/REQUIREMENT or TASK or PUSH/PULL/COMBINED COMMIT or SINGULAR COMMIT

Tool support/enforcement for triggering (IV-C2):
TOOL or CONVENTIONS

Publicness of the reviewed code (IV-C3):
POST COMMIT REVIEW or PRE COMMIT REVIEW

Means to keep unreviewed changes from customer releases (IV-C4):
ORGANIZATIONAL or PRE COMMIT REVIEW or RELEASE BRANCH

Means to ensure swift review completion (IV-C5):
PRIORITY and/or WIP LIMIT and/or TIME SLOT and/or AUTHOR’S RESPONSIBILITY

Blocking of process (IV-C6):
FULL FOLLOW-UP or WAIT FOR REVIEW or NO BLOCKING

Reviewers (IV-D)

Usual number of reviewers (IV-D1):
1 or 2 or 1 + AUTHOR

Rules for reviewer count / review skipping (IV-D2):
COMPONENT and/or AUTHOR’S EXPERIENCE and/or LIFECYCLE PHASE and/or CHANGE SIZE
and/or PAIR PROGRAMMING and/or REVIEWER’S CHOICE and/or AUTHOR’S CHOICE

Reviewer population (IV-D3):
EVERYBODY or ELITE or FIXED

Assignment of reviewers to reviews (IV-D4):
PULL or PUSH or MIX or FIXED

Tool support for reviewer assignment (IV-D5):
NO SUPPORT or REVIEWER RECOMMENDATIONS

Checking (IV-E)

Interaction while checking (IV-E1):
ON-DEMAND or ASYNCHRONOUS DISCUSSION or MEETING WITH AUTHOR or MEETING WITHOUT AUTHOR

Temporal arrangement of reviewers (IV-E2):
PARALLEL or SEQUENTIAL

Specialized roles (IV-E3):
ROLES or NO ROLES

Detection aids (IV-E4):
CHECKLISTS and/or STATIC CODE ANALYSIS and/or TESTING

Reviewer changes code (IV-E5):
NEVER or SOMETIMES

Feedback (IV-F)

Communication of issues (IV-F1):
WRITTEN or ORAL ONLY or ORAL STORED

Options to handle issues (IV-F2):
RESOLVE and/or REJECT and/or POSTPONE and/or IGNORE

Overarching facets (IV-G)

Use of metrics (IV-G1):
METRICS IN USE or NO METRICS USE

Tool specialization (IV-G2):
GENERAL-PURPOSE or SPECIALIZED

Fig. 1. Overview of the classification scheme. Each gray box is a facet. Possible values are written in small caps. Values separated by “or” are alternatives,
values separated by “and/or” can be combined. A tuple with values for all facets describes a review process.



for example with a separate state in a bug tracker’s
ticket workflow or with specialized tools that enforce
this process, like pull requests on GitHub2 or Ger-
rit3. An example of a separate task state is shown in
Fig. 2. ID,IE ,IF1 ,IF2 ,IG,IO,IS ,LG,LS ,LQ

CONVENTIONS If no tools are used, conventions and group
pressure are used to reach process compliance: “. . . and
this is more like peer pressure. If something goes live and
there was no review, the other developers will ask ’Why
not? What’s up?’ ” IQ IB1 ,IB1 ,IH ,IL,IQ,LM

3) Publicness of the reviewed code: The changes under
review can be made public to other developers before the
review, or they are still private during the review. The two
corresponding values for this facet are:
POST COMMIT REVIEW A review is performed after the

changes are visible for other developers4. IB1 ,IE ,IF1 ,IF2 ,

IG,IH ,IL,IP2 ,IQ

PRE COMMIT REVIEW A review is performed before the
changes reach the main development trunk5. Review
using pull requests is a special case of pre commit
review. IB2 ,ID,IO,IP1 ,IS ,LA,LV ,LM ,LG,LQ

4) Means to keep unreviewed changes from customer re-
leases: All studied teams that perform regular reviews to
detect defects try to avoid performing reviews after the changes
have been released to the customer(s). They choose different
means to reach this goal:
ORGANIZATIONAL They manually check for open reviews

when a release approaches, in combination with orga-
nizational means to ensure swift completion of reviews
(see section IV-C5). IE ,IF1 ,IF2 ,IH ,IL,IQ

PRE COMMIT REVIEW They use pre commit reviews (see sec-
tion IV-C3), either generally or for a certain time before
releases. IB2 ,ID,IO,IP1 ,IS ,LA,LV ,LS

RELEASE BRANCH There is a permanent technical separa-
tion between development branch/stream and release
branch/stream. IG,LS

5) Means to ensure swift review completion: To ensure that
a review does not stay open for too long and reviews don’t
accumulate too much, many teams employ at least one of the
following organizational means:
PRIORITY Reviews have higher priority than other tasks (“In

one team we defined a rule in which order tasks have
to be worked on. That production problems are the first
priority, but that when the implementation of a user story
is done and it is ready for review on the taskboard, that
this has a higher priority then starting a new story. To
keep the cycle times in a sprint short.” IF ). IE ,IF1 ,IF2

WIP LIMIT The team has a “work in progress (WIP) limit”6

that restricts the number of tasks that can be “ready for
review”. IH

2https://github.com
3https://www.gerritcodereview.com
4also called “Commit Then Review” in other publications
5also called “Review Then Commit” in other publications
6a term from “Kanban” and similar methodologies [34]

TIME SLOT The reviewers reserve specific times of the day or
week for code review. IG

AUTHOR’S RESPONSIBILITY The author actively seeks out a
reviewer, perhaps they even review together. When pre
commit reviews are used, the author has an interest to
get the review done, in order to get his changes included
into the common code base. IB1 ,ID,IL,IO,IP1 ,IQ,IS

6) Blocking of process: There are steps following code
review in a unit of work’s life cycle. Commonly this is
declaring the feature ready for use and delivering it to the
customer. The observed cases differ in whether these following
steps are blocked while the review is underway:
FULL FOLLOW-UP The steps following code review in

a unit of work’s life cycle, e.g. declaring it as
“ready for delivery”, are not begun until all issues
found in the review have been resolved. IB2 ,ID,IE ,IF1 ,

IF2 ,IG,IL,IO,IP1 ,IP2 ,IS ,LA,LF ,LM ,LG,LS ,LQ

WAIT FOR REVIEW The unit of work is blocked until the
reviewers finished checking. Fixing is done based on trust
only and not explicitly waited for. IH ,IQ

NO BLOCKING The unit of work can be further processed, e.g.
delivered to the customer, without checking for missing
reviews. IB1

D. Reviewers

The facets belonging to this group describe differences we
found regarding the selection of reviewers.

1) Usual number of reviewers: It was already noted as a
commonality of the observed processes that there are usually
at most two reviewers (excluding the author). Some teams
report rare cases with more reviewers: “When it’s database
migration code [. . . ], five to six selected reviewers have to
give their OK to it” IH . In cases ID and IL, the author usually
takes part in reviewing (see section IV-E1).

2) Rules for reviewer count / review skipping: The teams
have different rules regarding the minimal number of review-
ers, and whether this number can be zero, i.e. review can be
skipped. In most cases, at least one of the following factors
can influence the minimal number of reviewers:
COMPONENT Review is only obligatory for certain compo-

nents, or certain components have to be checked by
more reviewers. These components are commonly more
complex or the estimated consequences of defects are
more severe. IB1 ,IE ,IO,LS

AUTHOR’S EXPERIENCE Only changes by inexperienced de-
velopers have to be reviewed. IP2

LIFE CYCLE PHASE In some teams, review is only obligatory
near releases. IB2 ,ID,IP1 ,LS

CHANGE SIZE Changes smaller than a certain threshold do
not have to be reviewed. IL

PAIR PROGRAMMING Changes done using pair programming
do not have to be reviewed or have to be reviewed by
one reviewer less. IE ,IF2 ,IS

REVIEWER’S CHOICE The reviewer can decide that a review
is not needed or that a second reviewer would be advis-



able, for example based on an assessment of the change’s
complexity. IF1 ,IF2 ,IG,IH

AUTHOR’S CHOICE The author can choose to have addi-
tional reviewers, e.g. because she considers the change
risky. IB1 ,IB2

3) Reviewer population: There are large differences in the
studied cases regarding the set of potential reviewers. The
significant factor is how, and to what extent, the experience
of the potential reviewer is taken into account. Among the
studied teams, the variants were:
EVERYBODY Every team member shall be available as a

reviewer for every change, mostly with some exceptions
allowed. IB1 ,IB2 ,IE ,IF1 ,IF2 ,IH ,IL,LF

ELITE Only a certain subset of experienced developers shall
do reviews. IG,IS ,LF ,LG,LL

FIXED All reviews are done by the same reviewer(s). In one
of the observed cases, the team elects two experienced
reviewers to perform every review. Another variant is the
team leader reviewing everything. ID,IP2 ,IQ,LX

The authors themselves are not taken into account as the
only reviewer in any of the cases, but they are sometimes
asked to review jointly with another developer.

4) Assignment of reviewers to reviews: The interviewees
described several possibilities how the connection between
reviewers and reviews can be determined:
PULL Using this style of reviewer assignment, it is the

reviewer who chooses among the outstanding re-
views. IE ,IF1 ,IF2 ,LF

PUSH This is the opposite of the “pull” style: The au-
thor chooses who should perform the review. IB1 ,IB2 ,

IL,LA,LV ,LM ,LQ,LL

MIX In a mix of the “push” and “pull” style, the author
invites a preferred subset of the reviewer population
and the potential reviewers then decide if they want to
participate. IG,IH ,IS ,LA,LM ,LQ

FIXED In some cases, the same reviewers perform all reviews
for a certain team or module, so that there is no choice
left. ID,IP2 ,IQ,LA,LV ,LQ

5) Tool support for reviewer assignment: When the number
of potential reviewers is large and reviewer assignment is
performed in the “push” style, tool support can help the
authors find suitable reviewers.
NO SUPPORT There is no support for finding a suit-

able assignment of reviewers to reviews. ID,IE ,IF1 ,IF2 ,

IG,IH ,IL,IP2 ,IG,IS

REVIEWER RECOMMENDATIONS There is computer sup-
port for finding suitable reviewers for a given
change. IB1 ,IB2 ,LV ,LF ,LM

Tool support for “pull” assignment, i.e. help for the reviewers
to find open reviews that are suitable for them, comes to mind
as an obvious additional possibility. We could not observe this
kind of support in the studied cases.

E. Checking
The facets in this group describe variations that we observed

regarding the central activity of a code review: Checking the

code. Like in the rest of this paper, we only describe variations
in the codified processes of the teams, i.e. personal differences
in the checking habits of the individual reviewers are out of
the scope of our classification scheme.

1) Interaction while checking: Differences in reviewer in-
teraction while checking have been described in some of the
earliest publications on code reviews. We could also observe
similar differences in the studied cases:

ON-DEMAND The review participants only interact on-
demand, e.g. when there are questions regarding the
code. IE ,IG,IP2 ,LV ,LF

ASYNCHRONOUS DISCUSSION In addition to on-demand in-
teraction, review remarks are instantly communicated
and are discussed asynchronously by the review
participants. IB1 ,IB2 ,IH ,IO,IS ,LA,LM

MEETING WITH AUTHOR All review participants, potentially
including the author, meet for checking. Often, the au-
thor actively guides the reviewer and explains the code.
This has been called “pair review” by some of the
interviewees. ID,IF1 ,IF2 ,IL,LS

MEETING WITHOUT AUTHOR The reviewers meet to discuss
the code. This variant has been called “pair review”,
too. IQ

The main use of direct interaction according to our intervie-
wees is to help to understand the code and to gain background
information on implementation decisions (e.g. to decide if
something is there for a legitimate reason or if it is an issue).
It is also used to foster discussion on better solutions.

2) Temporal arrangement of reviewers: When multiple
reviewers perform a review, we observed two variants of
temporal arrangement:

PARALLEL All reviewers work in parallel and rework starts
when all are finished. Parallel review is a prereq-
uisite for direct inter-reviewer interaction. IB1 ,IB2 ,ID,

IF1 ,IF2 ,IH ,IO,IQ,LF ,LM

SEQUENTIAL Only one reviewer reviews at a time and rework
is done after each reviewer. IE ,IG,LV

3) Specialized roles: When there are multiple reviewers,
they can take on different roles, specializing on certain quality
aspects. We only observed a limited number of cases using
different roles, so that we divided this facet’s possibilities
coarsely:

ROLES The different reviewers take on different roles, e.g.
with one reviewer specializing in code quality and another
looking at GUI aspects. IG,LF

NO ROLES Reviewers do not take on different roles. IB1 ,IB2 ,

ID,IE ,IF1 ,IF2 ,IH ,IL,IP2 ,IQ,IS ,LF ,LQ

4) Detection aids: The checking in a code review is per-
formed mainly by viewing and reading source code (definition
1). To increase the chance of finding defects, some teams use
one or several auxiliary techniques:

CHECKLISTS A checklist, i.e. a list of questions or topics that
have to be checked in a review, is used by a small subset
of the observed cases. IF1 ,IF2 ,IL,IQ,IS ,LA



STATIC CODE ANALYSIS Static code analysis during checking
can be used to guide and focus the reviewer on por-
tions of the code that might need further attention. This
differs from the use of static analysis before reviewing
that is commonly done to find simple issues early (see
section IV-A). IE

TESTING In some of the cases, a limited amount of manual
exploratory testing is common when performing a re-
view (sometimes even adding additional unit tests during
reviewing). IB1 ,IB2 ,IE ,IF1 ,IF2 ,IG,IL,LS

5) Reviewer changes code: When performing a code re-
view, it is often tempting for the reviewer to directly change
some code. The observed teams use one of two options with
regard to code changes by the reviewer:

NEVER The reviewer is not allowed or technically not able to
change code during checking. IB1 ,IB2 ,ID,IH ,IQ

SOMETIMES The reviewers may change code during check-
ing. This option is most often used for changes that are
small and which are regarded as riskless and not worth
the effort to write a remark. IE ,IF1 ,IF2 ,IG,IL,IS

F. Feedback

Feedback in the form of review remarks is the main output
of the checking. The facets in this group summarize differ-
ences in the handling of feedback between the team’s review
processes.

1) Communication of issues: The bulk of issues that is
not fixed by the reviewer (and sometimes also issues that
have been fixed) has to be communicated to the author. This
communication can generally be divided into oral and written
communication.

WRITTEN The found issues are mainly communicated in
written form. Depending on the used tools, this can
happen for example in the form of email, as ticket
comments, using comments in the source code or
using a specialized review tool. IB1 ,IB2 ,IE ,IF1 ,IF2 ,IG,

IH ,IO,IQ,IS ,LA,LV ,LF ,LM ,LG,LS ,LQ

ORAL ONLY The issues are discussed orally with the author,
mostly face-to-face. There is no storage of the issues,
except for short-term note taking. ID,LX

ORAL STORED The issues are mainly communicated orally,
but also stored in written form, e.g. for traceability
purposes. IL

2) Options to handle issues: When the review remarks
finally reach the author, he or she decides how to cope with
them. We found the following possibilities:

RESOLVE Change the code according to the remark.
REJECT Ask for clarification or justification of the remark

(when it is seen as some sort of “false positive” by the
author).

POSTPONE Create a task to perform the needed changes.
This task is then prioritized according to the team’s
development process. IB1 ,IH ,IL,IQ

IGNORE Do nothing. IB1 ,IH ,IQ

The actually found differences apply to the options POST-
PONE and IGNORE. Some teams dismiss postponing with
an attitude of “either fix it now or forget it”. And some
teams demand a reaction on every raised issue (“. . . when the
reviewer says something, that either has to be done this way or
it has to be discussed together and a consensus reached.” IS )
while for some it is an accepted practice to ignore remarks.

G. Overarching facets

The facets in this group pertain to aspects that span the
whole code review process.

1) Use of metrics: The collection of review metrics and
the systematic use of review results to improve the process
is mentioned in the literature as a key feature that separates
“inspection” from “Inspection” [3]:
METRICS IN USE Metrics on the code reviews are gathered

and used systematically, for example for report generation
and process improvement. LA,LF ,LM

NO METRICS USE Metrics on the code reviews are either
not available or not used systematically. IB1 ,IB2 ,ID,IE ,

IF1 ,IF2 ,IG,IH ,IL,IO,IP1 ,IP2 ,IQ,IS

We could not observe the value METRICS IN USE in the
empirical data from the interviews, but only in the cases
described in the literature.

2) Tool specialization: In the preceding sections, several
facets referred to tool support for specific tasks. More gener-
ally, we observed a difference between the use of a specialized
tool and the combination of general purpose tools:
GENERAL-PURPOSE No specialized review software is in use.

Instead, the teams use a combination of IDE, source
code management system (SCM) and ticket system/bug
tracker. Combined, these systems support all features
seen as the core of a review tool: Viewing, examining
and possibly editing the code, determining which parts
of the code belong to a unit of work, documenting
issues and integration of reviews into the development
process. ID,IE ,IF1 ,IF2 ,IG,IL,IQ

SPECIALIZED The teams use a specialized code review
tool that combines all relevant features. IB1 ,IB2 ,IH ,IO,

IP2 ,IS ,LA,LV ,LF ,LM ,LG,LS ,LL

Specifically, the following tools were used or mentioned
in at least one of the observed cases: Gerrit7, Crucible8,
Stash9, GitHub pull requests10, Upsource11, Collaborator12,
ReviewClipse13 and CodeFlow [26].

To conclude the presentation of the classification scheme,
the tables III and IV show the values taken for each facet
for the analyzed cases for which enough data for a thorough
classification was available.

7https://www.gerritcodereview.com
8https://www.atlassian.com/software/crucible/
9https://www.atlassian.com/software/stash
10https://github.com
11https://www.jetbrains.com/upsource/
12http://smartbear.com/product/collaborator/
13https://www.inso.tuwien.ac.at/projects/reviewclipse/



TABLE III
PROCESS CHARACTERISTICS FOR THE CASES WITH REGULAR CODE REVIEWS (1/2). ONLY CASES WHERE INFORMATION FOR NEARLY ALL FACETS WAS

AVAILABLE ARE LISTED.

Company/case IB1 IB2 ID IE IF1 IF2
Unit of work
(sec. IV-C1)

PUSH/PULL/COM-
BINED COMMIT

PUSH/PULL/COM-
BINED COMMIT

SINGULAR
COMMIT

TASK STORY/REQUIRE-
MENT

TASK

Trigger support
(sec. IV-C2)

CONVENTIONS CONVENTIONS TOOL TOOL TOOL TOOL

Publicness
(sec. IV-C3)

POST COMMIT
REVIEW

PRE COMMIT
REVIEW

PRE COMMIT
REVIEW

POST COMMIT
REVIEW

POST COMMIT
REVIEW

POST COMMIT
REVIEW

Keep from
customer
(sec. IV-C4)

none PRE COMMIT
REVIEW

PRE COMMIT
REVIEW

ORGANIZATIONAL ORGANIZATIONAL ORGANIZATIONAL

Swift completion
(sec. IV-C5)

none AUTHOR’S
RESPONSIBILITY

AUTHOR’S
RESPONSIBILITY

PRIORITY PRIORITY PRIORITY

Blocking
(sec. IV-C6)

NO BLOCKING FULL
FOLLOW-UP

FULL
FOLLOW-UP

FULL
FOLLOW-UP

FULL
FOLLOW-UP

FULL
FOLLOW-UP

Reviewer count
(sec. IV-D1)

1 1 1+AUTHOR 1 1 1

Reviewer rules
(sec. IV-D2)

COMPONENT +
AUTHOR’S
CHOICE

LIFECYCLE
PHASE +
AUTHOR’S
CHOICE

LIFECYCLE
PHASE

COMPONENT +
PAIR
PROGRAMMING

REVIEWER’S
CHOICE

PAIR
PROGRAMMING
+ REVIEWER’S
CHOICE

Population
(sec. IV-D3)

EVERYBODY EVERYBODY FIXED EVERYBODY EVERYBODY EVERYBODY

Assignment
(sec. IV-D4)

PUSH PUSH FIXED PULL PULL PULL

Assignment
support
(sec. IV-D5)

REVIEWER REC-
OMMENDATIONS

REVIEWER REC-
OMMENDATIONS

NO SUPPORT NO SUPPORT NO SUPPORT NO SUPPORT

Interaction
(sec. IV-E1)

ASYNCHRONOUS
DISCUSSION

ASYNCHRONOUS
DISCUSSION

MEETING WITH
AUTHOR

ON-DEMAND MEETING WITH
AUTHOR

MEETING WITH
AUTHOR

Arrangement
(sec. IV-E2)

PARALLEL PARALLEL PARALLEL SEQUENTIAL PARALLEL PARALLEL

Roles
(sec. IV-E3)

NO ROLES NO ROLES NO ROLES NO ROLES NO ROLES NO ROLES

Detection aids
(sec. IV-E4)

TESTING TESTING none STATIC CODE
ANALYSIS +
TESTING

CHECKLISTS +
TESTING

CHECKLISTS +
TESTING

Code changes
(sec. IV-E5)

NEVER NEVER NEVER SOMETIMES SOMETIMES SOMETIMES

Issue
communication
(sec. IV-F1)

WRITTEN WRITTEN ORAL ONLY WRITTEN WRITTEN WRITTEN

Issue handling
options
(sec. IV-F2)

RESOLVE +
REJECT +
POSTPONE +
IGNORE

unknown RESOLVE +
REJECT

RESOLVE +
REJECT

unknown unknown

Metrics
(sec. IV-G1)

NO METRICS USE NO METRICS USE NO METRICS USE NO METRICS USE NO METRICS USE NO METRICS USE

Tool
specialization
(sec. IV-G2)

SPECIALIZED SPECIALIZED GENERAL-
PURPOSE

GENERAL-
PURPOSE

GENERAL-
PURPOSE

GENERAL-
PURPOSE

V. LIMITATIONS

In this section, we will first describe limitations of our
approach to the collection and analysis of empirical data from
the interviews. After that, we will describe some limitations
of the literature review and weaknesses of our classification
scheme.

A characteristic that our study shares with all Grounded
Theory studies is that it relies on the human researcher as the
instrument for data collection and analysis and is, therefore,
prone to researcher bias. We tried to mitigate this threat

by following Grounded Theory best practices and additional
measures described below.

Some threats to validity result from our choice of interviews
as the main method of data collection. There is a risk that
the interviewees left out or changed some aspects of their
processes when describing them. The interviews did not touch
upon sensitive personal data. Nevertheless, we tried to reduce
this risk by ensuring anonymity to all participants. We checked
for consistency using triangulation of several descriptions of
the same process at company IE and authors’ observations at
companies IE and IJ. This led us to conclude that this risk is



TABLE IV
PROCESS CHARACTERISTICS FOR THE CASES WITH REGULAR CODE REVIEWS (2/2). ONLY CASES WHERE INFORMATION FOR NEARLY ALL FACETS WAS

AVAILABLE ARE LISTED.

company/case IG IH IL IQ IS
Unit of work
(sec. IV-C1)

TASK STORY/REQUIRE-
MENT

STORY/REQUIRE-
MENT

RELEASE PUSH/PULL/COM-
BINED COMMIT

Trigger support
(sec. IV-C2)

TOOL CONVENTIONS CONVENTIONS CONVENTIONS TOOL

Publicness
(sec. IV-C3)

POST COMMIT
REVIEW

POST COMMIT
REVIEW

POST COMMIT
REVIEW

POST COMMIT
REVIEW

PRE COMMIT
REVIEW

Keep from
customer
(sec. IV-C4)

RELEASE BRANCH ORGANIZATIONAL ORGANIZATIONAL ORGANIZATIONAL PRE COMMIT
REVIEW

Swift completion
(sec. IV-C5)

TIME SLOT WIP LIMIT AUTHOR’S
RESPONSIBILITY

AUTHOR’S
RESPONSIBILITY

AUTHOR’S
RESPONSIBILITY

Blocking
(sec. IV-C6)

FULL FOLLOW-UP WAIT FOR REVIEW FULL FOLLOW-UP WAIT FOR REVIEW FULL FOLLOW-UP

Reviewer count
(sec. IV-D1)

2 2 1+AUTHOR 2 1

Reviewer rules
(sec. IV-D2)

REVIEWER’S
CHOICE

REVIEWER’S
CHOICE

CHANGE SIZE none PAIR
PROGRAMMING

Population
(sec. IV-D3)

ELITE EVERYBODY EVERYBODY FIXED ELITE

Assignment
(sec. IV-D4)

MIX MIX PUSH FIXED MIX

Assignment
support
(sec. IV-D5)

NO SUPPORT NO SUPPORT NO SUPPORT NO SUPPORT NO SUPPORT

Interaction
(sec. IV-E1)

ON-DEMAND ASYNCHRONOUS
DISCUSSION

MEETING WITH
AUTHOR

MEETING WITHOUT
AUTHOR

ASYNCHRONOUS
DISCUSSION

Arrangement
(sec. IV-E2)

SEQUENTIAL PARALLEL PARALLEL PARALLEL PARALLEL

Roles
(sec. IV-E3)

ROLES NO ROLES NO ROLES NO ROLES NO ROLES

Detection aids
(sec. IV-E4)

TESTING none CHECKLISTS +
TESTING

CHECKLISTS CHECKLISTS

Code changes
(sec. IV-E5)

SOMETIMES NEVER SOMETIMES NEVER SOMETIMES

Issue
communication
(sec. IV-F1)

WRITTEN WRITTEN ORAL STORED WRITTEN WRITTEN

Issue handling
options
(sec. IV-F2)

unknown RESOLVE + REJECT
+ POSTPONE +
IGNORE

RESOLVE + REJECT
+ POSTPONE

RESOLVE + REJECT
+ POSTPONE +
IGNORE

RESOLVE + REJECT

Metrics
(sec. IV-G1)

NO METRICS USE NO METRICS USE NO METRICS USE NO METRICS USE NO METRICS USE

Tool
specialization
(sec. IV-G2)

GENERAL-PURPOSE SPECIALIZED GENERAL-PURPOSE GENERAL-PURPOSE SPECIALIZED

low enough. Nevertheless, the reader should keep in mind that
there is only one data point for most of the companies and that
a larger study using several data points from each company as
well as longitudinal observation could provide more reliable
results.

The choice of the interviewer can also result in bias. To
mitigate this risk, we used an interview guide and asked
another experienced researcher to check this guide before
using it. As some of the interviewees were colleagues of
some of the authors, we made sure that these interviews
were conducted by another one of the authors so that passive
researcher bias was reduced.

During data analysis, there is the risk of introducing ob-
servational bias, for example, when important data is not

taken into account or open questions are not followed up.
This risk is reduced through the used Grounded Theory
practices: Careful and thorough coding, constant comparison,
theoretical sampling and memoing. To avoid premature closing
of the interviews, we explicitly asked for points missed in
the discussion at the end of each interview. By recording and
transcribing all interviews, we ensured that no information was
lost unintentionally and that we could come back to the data
for coding and checking several times.

To mitigate researcher bias during data analysis and inter-
pretation, coding was performed by several authors and the
results were discussed by all authors. As another important
mitigation for observational as well as researcher bias, we
performed “member checking”: We provided our results to



the study participants and asked for feedback, which was then
incorporated into the study.

Regarding the literature review, we mitigated many potential
threats to validity by following the rigorous procedure outlined
by Wohlin [16]. A snowballing-based literature review is
sensitive to the choice of the start set. We chose a start set
that was heterogeneous and quite large, which minimized this
threat. The choice to only include peer-reviewed publications
ensured a minimum of reliability of the data. It comes at the
cost of excluding many review process descriptions from other
sources, e.g. from blogs on the Internet. The most significant
threat to the validity of the literature review is that the decision
on inclusion and exclusion was done only by a single author.
We consider it acceptable because the results of the literature
review are only used as an additional data source.

As Grounded Theory studies use theoretical sampling and
rather small sample sizes, it is hard to assess their generaliz-
ability. We used a broad range of different interviewees from
a heterogeneous sample of companies, and our sample size
is quite large compared to most qualitative studies. By trian-
gulating the empirical findings with data from the literature
review, we gained more confidence in the generalizability of
our findings. Nevertheless, the set of potential code review
processes is essentially unbounded, so it would obviously be
presumptuous to claim that our model captures all variation
there is in change-based industrial code review processes.

By choosing a faceted description, we were able to cleanly
describe the variations we found in practice. A weakness of
this approach is that it is more complicated to use, compared
to a small number of placative process names. In addition,
interdependencies between certain values of the facets are
not immediately obvious. Another drawback of the proposed
model is the large number of facets. We intentionally did not
exclude facets based on some measure of relevance, because
relevance depends on the context in which the model is used.
Researchers using our model should consider excluding facets
that they know to be irrelevant for their study.

VI. DISCUSSION

Our study confirms many of the findings of Rigby and Bird
[2]. We could also note a convergence towards lightweight,
change-based code review processes in industry. Additionally,
many of the variations between the processes described by
Rigby and Bird could be observed in our data, too. However,
we couldn’t observe as much convergence as they do regarding
the subtleties of the processes. In part, this is probably due
to our more fine-grained comparison of the processes, but
there are also some contradictions: They state that code review
converges towards a process that happens “before a change is
committed”, while we observed a quite balanced distribution
of pre commit vs post commit reviews. Furthermore, we could
observe several cases with face-to-face interaction or change
sets larger than the ones described in their study. Lastly, they
state that review has changed to a group problem solving
activity, which is also not supported as convergent practice by
our data. We believe that most of these differences are founded

in different contextual characteristics of the respective study
samples. Our sample contains many companies that are small
and work co-located, in contrast to the large companies and
open source projects sampled by Rigby and Bird. In a more
abstract sense, we consider this an indicator that results from
studies of open source software development can be valuable
for commercial development, but it is also a warning that
results from large companies and open source development
are not fully generalizable to smaller companies.

An analysis and systematization of the current state of
industrial code review processes is interesting in itself, but
we believe that the main benefit of the current study is as a
foundation for further research. The most obvious direction of
further research is to complement and extend our results using
quantitative methods. We are currently considering to perform
a survey study that will allow us to assess which of the found
variants are in wide-spread use and which are of marginal
importance only. Such a study could also substantiate some
hypotheses on the reasons for the observed variations that we
gained from the interviews.

The current study is purely descriptive. It does not study
which of the identified process variants perform best given a
certain context and goal. Consequently, assessing the benefits
and problems of the identified variants is another research
avenue. For some facets such studies already exist, for example
the studies by Votta [35], Johnson and Tjahjono [36] and
others on “Interaction while checking” and “Communication
of issues”, the large body of literature on reading techniques
with distinct roles (e.g. the studies by Laitenberger et al. [37])
and some results on differences regarding “Publicness of the
reviewed code” by Rigby, German and Storey [38] and Baum
et al. [33]. Nevertheless, many open questions remain.

A final direction of further research is to develop better
processes and tools for code review. The current study allows
researchers to identify possible incompatibilities between their
suggestions and current industrial practices. Minimizing these
incompatibilities helps to foster the adoption of improvements.

VII. CONCLUSION

The current article describes a classification scheme for
change-based code review processes in industry. This scheme
is based on descriptions of the code review processes of eleven
companies, obtained from interviews with software engineer-
ing professionals that were performed during a Grounded
Theory study. It has been further checked and extended
with data from published code review process descriptions
for eleven other companies found using a semi-systematic
literature review.

Despite the differences in the details, there are many sim-
ilarities in the observed code review processes. Code review
is performed change-based, with rules and conventions taking
the place of explicit planning and management actions. It is
performed after unit testing and static code analysis verified
the changes. The number of reviewers is generally low, mostly
only one or two. Review processes that are not change-based



are very uncommon and consequently not analyzed in detail
in the study.

The classification scheme systematizing the processes’
differences consists of 20 facets that were grouped into
the following categories: “Process embedding”, “Reviewers”,
“Checking”, “Feedback” and “Overarching facets”. The full
scheme is shown in Fig. 1. Some exemplary facets are

• “Publicness of the reviewed code”: In some cases reviews
are performed before committing to the central source
code repository, in other cases afterward,

• “Reviewer population”: In some cases, all team members
should or even have to be available as reviewers, while
in others only an elite can act as reviewers, and

• “Temporal arrangement of reviewers”: In some cases,
multiple reviewers work in parallel, while in others the
second reviewer starts only after the remarks of the first
have been fixed.

The results presented in this article can be used when
choosing or adapting a code review process in the industry,
but we see their main use as a foundation for further research
on code reviews.

ACKNOWLEDGMENTS

The authors would like to thank all participants for the time
and effort they donated for the interviews and for member
checking. Further thanks go to Raphael Pham for his method-
ological advice and valuable feedback.

REFERENCES

[1] M. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.

[2] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering. ACM, 2013, pp. 202–212.

[3] T. Gilb and D. Graham, Software Inspection. Addison-Wesley, 1993.
[4] K. Wiegers, Peer reviews in software: a practical guide, ser. Addison-

Wesley information technology series. Addison-Wesley, 2002.
[5] A. Porter, H. Siy, and L. Votta, “A review of software inspections,”

Advances in Computers, vol. 42, pp. 39–76, 1996.
[6] O. Laitenberger and J.-M. DeBaud, “An encompassing life cycle centric

survey of software inspection,” Journal of Systems and Software, vol. 50,
no. 1, pp. 5–31, 2000.

[7] IEEE Standard for Software Reviews and Audits, IEEE Std. 1028-2008.
[8] L. P. W. Kim, C. Sauer, and R. Jeffery, “A framework for software

development technical reviews,” in Software Quality and Productivity.
Springer, 1995, pp. 294–299.

[9] F. Macdonald and J. Miller, “Modelling software inspection methods for
the application of tool support,” University of Strathclyde, Tech. Rep.
EFoCS-16-95, 1995.

[10] S. Kollanus and J. Koskinen, “Software inspections in practice: Six case
studies,” in Product-Focused Software Process Improvement. Springer,
2006, pp. 377–382.

[11] M. Ciolkowski, O. Laitenberger, and S. Biffl, “Software reviews: The
state of the practice,” IEEE software, vol. 20, no. 6, pp. 46–51, 2003.

[12] J. Corbin and A. Strauss, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory, 3rd ed. SAGE
Publications, 2007.

[13] B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine, 1967.

[14] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering, vol. 16, no. 4, pp. 487–513, 2011.

[15] S. Friese, Qualitative Data Analysis with ATLAS.ti. SAGE Publications,
2012.

[16] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in EASE ’14, 2014.

[17] J. Ratcliffe, “Moving software quality upstream: The positive impact
of lightweight peer code review,” in Pacific NW Software Quality
Conference, 2009.

[18] M. V. Mantyla and C. Lassenius, “What types of defects are really
discovered in code reviews?” Software Engineering, IEEE Transactions
on, vol. 35, no. 3, pp. 430–448, 2009.

[19] B. Meyer, “Design and code reviews in the age of the internet,” in
Software Engineering Approaches for Offshore and Outsourced Devel-
opment. Springer, 2009, pp. 126–133.

[20] A. L. Ferreira, R. J. Machado, L. Costa, J. G. Silva, R. F. Batista,
and M. C. Paulk, “An approach to improving software inspections per-
formance,” in Software Maintenance (ICSM), 2010 IEEE International
Conference on. IEEE, 2010, pp. 1–8.

[21] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 931–940.

[22] M. Bernhart, S. Reiterer, K. Matt, A. Mauczka, and T. Grechenig,
“A task-based code review process and tool to comply with the do-
278/ed-109 standard for air traffic managment software development: An
industrial case study,” in High-Assurance Systems Engineering (HASE),
2011 IEEE 13th International Symposium on, 2011.

[23] M. Bernhart, S. Strobl, A. Mauczka, and T. Grechenig, “Applying
continuous code reviews in airport operations software,” in Quality
Software (QSIC), 2012 12th International Conference on. IEEE, 2012,
pp. 214–219.

[24] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013, pp. 712–721.

[25] C. Bird, T. Carnahan, and M. Greiler, “Lessons learned from building
and deploying a code review analytics platform,” in Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on,
2015.

[26] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in MSR ’15 Proceedings of
the 12th Working Conference on Mining Software Repositories, 2015,
pp. 146–156.

[27] M. Mukadam, C. Bird, and P. C. Rigby, “Gerrit software code review
data from android,” in Mining Software Repositories (MSR), 2013 10th
IEEE Working Conference on. IEEE, 2013, pp. 45–48.

[28] J. Shimagaki, J. Shimagaki, Y. Kamei, S. McIntosh, A. E. Hassan, and
N. Ubayashi, “A study of the quality-impacting practices of modern code
review at sony mobile,” in ICSE 16 Companion, 2016.

[29] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, pp. 1–44, 2015.

[30] T. Zhang, M. Song, J. Pinedo, and M. Kim, “Interactive code review for
systematic changes,” in Proceedings of 37th IEEE/ACM International
Conference on Software Engineering. IEEE, 2015.

[31] R. A. Baker Jr, “Code reviews enhance software quality,” in Proceedings
of the 19th International Conference on Software Engineering. ACM,
1997, pp. 570–571.

[32] M. Bernhart and T. Grechenig, “On the understanding of programs with
continuous code reviews,” in Program Comprehension (ICPC), 2013
IEEE 21st International Conference on. IEEE, 2013, pp. 192–198.

[33] T. Baum, F. Kortum, K. Schneider, A. Brack, and J. Schauder, “Com-
paring pre commit reviews and post commit reviews using process
simulation,” in Software and System Process (ICSSP), 2016 International
Conference on, 2016.

[34] C. Ladas, Scrumban-essays on kanban systems for lean software devel-
opment. Lulu.com, 2009.

[35] L. G. Votta, “Does every inspection need a meeting?” ACM SIGSOFT
Software Engineering Notes, vol. 18, no. 5, pp. 107–114, 1993.

[36] P. M. Johnson and D. Tjahjono, “Does every inspection really need
a meeting?” Empirical Software Engineering, vol. 3, no. 1, pp. 9–35,
1998.

[37] O. Laitenberger, “Cost-effective detection of software defects through
perspective-based inspections,” Ph.D. dissertation, 2000.

[38] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” in Proceedings
of the 30th International Conference on Software Engineering. ACM,
2008, pp. 541–550.


